Search results
Results from the WOW.Com Content Network
In acetylene, the H–C≡C bond angles are 180°. By virtue of this bond angle, alkynes are rod-like. Correspondingly, cyclic alkynes are rare. Benzyne cannot be isolated. . The C≡C bond distance of 118 picometers (for C 2 H 2) is much shorter than the C=C distance in alkenes (132 pm, for C 2 H 4) or the C–C bond in alkanes (153 p
Trans alkenes react more rapidly than cis alkenes in general. The reactivity difference between alkynes and alkenes is usually not great enough to isolate intermediate alkenes; however, alkenes can be isolated from allene reductions. Diimide reduces symmetrical double bonds i.e., C=C. N=N, O=O etc. unsymmetrical double bonds can not be reduced
Alkenes generally have stronger smells than their corresponding alkanes. Ethylene has a sweet and musty odor. Strained alkenes, in particular, like norbornene and trans -cyclooctene are known to have strong, unpleasant odors, a fact consistent with the stronger π complexes they form with metal ions including copper.
Unsaturated hydrocarbons, which have one or more double or triple bonds between carbon atoms. Those with one or more double bonds are called alkenes. Those with one double bond have the formula C n H 2n (assuming non-cyclic structures). [1]: 628 Those containing triple bonds are called alkyne. Those with one triple bond have the formula C n H ...
Aliphatic compounds can be saturated, joined by single bonds (), or unsaturated, with double bonds or triple bonds ().If other elements (heteroatoms) are bound to the carbon chain, the most common being oxygen, nitrogen, sulfur, and chlorine, it is no longer a hydrocarbon, and therefore no longer an aliphatic compound.
After addition to a straight-chain alkene such as ethene (C 2 H 4), the resulting alkane will rapidly and freely rotate around its single sigma bond under normal conditions (i.e. room temperature). Thus whether substituents are added to the same side (syn) or opposite sides (anti) of a double can usually be ignored due to free rotation.
[2] [3] Many of the simple molecules of organic chemistry, such as the alkanes and alkenes, have both linear and ring isomers, that is, both acyclic and cyclic. For those with 4 or more carbons, the linear forms can have straight-chain or branched-chain isomers.
In organic chemistry, an alkane, or paraffin (a historical trivial name that also has other meanings), is an acyclic saturated hydrocarbon. In other words, an alkane consists of hydrogen and carbon atoms arranged in a tree structure in which all the carbon–carbon bonds are single. [1] Alkanes have the general chemical formula C n H 2n+2.