Search results
Results from the WOW.Com Content Network
The ordered pair (a, b) is different from the ordered pair (b, a), unless a = b. In contrast, the unordered pair, denoted {a, b}, equals the unordered pair {b, a}. Ordered pairs are also called 2-tuples, or sequences (sometimes, lists in a computer science context) of length 2. Ordered pairs of scalars are sometimes called 2-dimensional vectors.
The closest pair of points problem or closest pair problem is a problem of computational geometry: given points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane [ 1 ] was among the first geometric problems that were treated at the origins of the systematic ...
Given a set X, a relation R over X is a set of ordered pairs of elements from X, formally: R ⊆ { (x,y) | x, y ∈ X}. [2] [10] The statement (x,y) ∈ R reads "x is R-related to y" and is written in infix notation as xRy. [7] [8] The order of the elements is important; if x ≠ y then yRx can be true or false independently of xRy.
Vectors can be specified using either ordered pair notation (a subset of ordered set notation using only two components), or matrix notation, as with rectangular coordinates. In these forms, the first component of the vector is r (instead of v 1), and the second component is θ (instead of v 2).
The problem of finding all solutions to the 8-queens problem can be quite computationally expensive, as there are 4,426,165,368 possible arrangements of eight queens on an 8×8 board, [a] but only 92 solutions. It is possible to use shortcuts that reduce computational requirements or rules of thumb that avoids brute-force computational techniques.
Solution of a travelling salesman problem: the black line shows the shortest possible loop that connects every red dot. In the theory of computational complexity, the travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the ...
The general problem of solving Sudoku puzzles on n 2 ×n 2 grids of n×n blocks is known to be NP-complete. [8] A puzzle can be expressed as a graph coloring problem. [9] The aim is to construct a 9-coloring of a particular graph, given a partial 9-coloring. The Sudoku graph has 81 vertices, one vertex for each cell.
A loose rule of thumb dictates that stiff differential equations require the use of implicit schemes, whereas non-stiff problems can be solved more efficiently with explicit schemes. The so-called general linear methods (GLMs) are a generalization of the above two large classes of methods.