Search results
Results from the WOW.Com Content Network
The ordered pair (a, b) is different from the ordered pair (b, a), unless a = b. In contrast, the unordered pair, denoted {a, b}, equals the unordered pair {b, a}. Ordered pairs are also called 2-tuples, or sequences (sometimes, lists in a computer science context) of length 2. Ordered pairs of scalars are sometimes called 2-dimensional vectors.
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
In some cases the argument of a function may be an ordered pair of elements taken from some set or sets. For example, a function f can be defined as mapping any pair of real numbers ( x , y ) {\displaystyle (x,y)} to the sum of their squares, x 2 + y 2 {\displaystyle x^{2}+y^{2}} .
An ordered pair is a 2-tuple or couple. More generally still, one can define the Cartesian product of an indexed family of sets. The Cartesian product is named after René Descartes , [ 5 ] whose formulation of analytic geometry gave rise to the concept, which is further generalized in terms of direct product .
The ordered pair (,) is called a measurable space. A σ-algebra of subsets is a set algebra of subsets; elements of the latter only need to be closed under the union or intersection of finitely many subsets, which is a weaker condition.
Find the largest index k such that a[k] < a[k + 1]. If no such index exists, the permutation is the last permutation. Find the largest index l greater than k such that a[k] < a[l]. Swap the value of a[k] with that of a[l]. Reverse the sequence from a[k + 1] up to and including the final element a[n].
Precisely, a binary relation over sets and is a set of ordered pairs (,) where is in and is in . [2] It encodes the common concept of relation: an element x {\displaystyle x} is related to an element y {\displaystyle y} , if and only if the pair ( x , y ) {\displaystyle (x,y)} belongs to the set of ordered pairs that defines the binary relation.
In formal terms, a directed graph is an ordered pair G = (V, A) where [1]. V is a set whose elements are called vertices, nodes, or points;; A is a set of ordered pairs of vertices, called arcs, directed edges (sometimes simply edges with the corresponding set named E instead of A), arrows, or directed lines.