Search results
Results from the WOW.Com Content Network
In organic chemistry, an alkane, or paraffin (a historical trivial name that also has other meanings), is an acyclic saturated hydrocarbon. In other words, an alkane consists of hydrogen and carbon atoms arranged in a tree structure in which all the carbon–carbon bonds are single. [1] Alkanes have the general chemical formula C n H 2n+2.
The following is a list of straight-chain alkanes, the total number of isomers of each (including branched chains), and their common names, sorted by number of carbon atoms. [ 1 ] [ 2 ] Number of C atoms
A 3D model of ethyne (), the simplest alkyneIn organic chemistry, an alkyne is an unsaturated hydrocarbon containing at least one carbon—carbon triple bond. [1] The simplest acyclic alkynes with only one triple bond and no other functional groups form a homologous series with the general chemical formula C n H 2n−2.
Alkenes are generally colorless non-polar compounds, somewhat similar to alkanes but more reactive. The first few members of the series are gases or liquids at room temperature. The simplest alkene, ethylene (C 2 H 4) (or "ethene" in the IUPAC nomenclature) is the organic compound produced on the largest scale industrially. [5]
alkene (unsaturated) vs alkane (saturated) alkyne (unsaturated) vs alkane (saturated) arene (unsaturated) vs cycloalkane (saturated) For organic compounds containing heteroatoms (other than C and H), the list of unsaturated groups is long but some common types are:
There are also a large number of branched or ring alkanes that have specific names, e.g., tert-butyl, bornyl, cyclohexyl, etc. There are several functional groups that contain an alkene such as vinyl group, allyl group, or acrylic group. Hydrocarbons may form charged structures: positively charged carbocations or negative carbanions.
Substrates include not only alkenes and alkynes, but also aldehydes, imines, and nitriles, [29] which are converted into the corresponding saturated compounds, i.e. alcohols and amines. Thus, alkyl aldehydes, which can be synthesized with the oxo process from carbon monoxide and an alkene, can be converted to alcohols. E.g.
Metal alkyne complexes are intermediates in the semihydrogenation of alkynes to alkenes: C 2 R 2 + H 2 → cis-C 2 R 2 H 2. This transformation is conducted on a large scale in refineries, which unintentionally produce acetylene during the production of ethylene. It is also useful in the preparation of fine chemicals. Semihydrogenation affords ...