enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Channel capacity - Wikipedia

    en.wikipedia.org/wiki/Channel_capacity

    Information theory, developed by Claude E. Shannon in 1948, defines the notion of channel capacity and provides a mathematical model by which it may be computed. The key result states that the capacity of the channel, as defined above, is given by the maximum of the mutual information between the input and output of the channel, where the ...

  3. Information theory - Wikipedia

    en.wikipedia.org/wiki/Information_theory

    In this context, either an information-theoretical measure, such as functional clusters (Gerald Edelman and Giulio Tononi's functional clustering model and dynamic core hypothesis (DCH) [47]) or effective information (Tononi's integrated information theory (IIT) of consciousness [48] [49] [50]), is defined (on the basis of a reentrant process ...

  4. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    In the view of Jaynes (1957), [19] thermodynamic entropy, as explained by statistical mechanics, should be seen as an application of Shannon's information theory: the thermodynamic entropy is interpreted as being proportional to the amount of further Shannon information needed to define the detailed microscopic state of the system, that remains ...

  5. Negentropy - Wikipedia

    en.wikipedia.org/wiki/Negentropy

    In information theory and statistics, negentropy is used as a measure of distance to normality. [4] [5] [6] Out of all distributions with a given mean and variance, the normal or Gaussian distribution is the one with the highest entropy. Negentropy measures the difference in entropy between a given distribution and the Gaussian distribution ...

  6. Information theory and measure theory - Wikipedia

    en.wikipedia.org/wiki/Information_theory_and...

    Many of the concepts in information theory have separate definitions and formulas for continuous and discrete cases. For example, entropy is usually defined for discrete random variables, whereas for continuous random variables the related concept of differential entropy, written (), is used (see Cover and Thomas, 2006, chapter 8).

  7. Noisy-channel coding theorem - Wikipedia

    en.wikipedia.org/wiki/Noisy-channel_coding_theorem

    In information theory, the noisy-channel coding theorem (sometimes Shannon's theorem or Shannon's limit), establishes that for any given degree of noise contamination of a communication channel, it is possible (in theory) to communicate discrete data (digital information) nearly error-free up to a computable maximum rate through the channel.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Information content - Wikipedia

    en.wikipedia.org/wiki/Information_content

    For a given probability space, the measurement of rarer events are intuitively more "surprising", and yield more information content, than more common values. Thus, self-information is a strictly decreasing monotonic function of the probability, or sometimes called an "antitonic" function.