enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Checking whether a coin is fair - Wikipedia

    en.wikipedia.org/wiki/Checking_whether_a_coin_is...

    (Note: r is the probability of obtaining heads when tossing the same coin once.) Plot of the probability density f(r | H = 7, T = 3) = 1320 r 7 (1 − r) 3 with r ranging from 0 to 1. The probability for an unbiased coin (defined for this purpose as one whose probability of coming down heads is somewhere between 45% and 55%)

  3. Fair coin - Wikipedia

    en.wikipedia.org/wiki/Fair_coin

    A fair coin, when tossed, should have an equal chance of landing either side up. In probability theory and statistics, a sequence of independent Bernoulli trials with probability 1/2 of success on each trial is metaphorically called a fair coin. One for which the probability is not 1/2 is called a biased or unfair coin.

  4. Bertrand's box paradox - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_box_paradox

    The two remaining possibilities are equally likely. So the probability that the box is GG, and the other coin is also gold, is ⁠1/2⁠. The reasoning for the 2/3 is as follows: Originally, all six coins were equally likely to be chosen. The chosen coin cannot be from drawer S of box GS, or from either drawer of box SS.

  5. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    For instance, if X is used to denote the outcome of a coin toss ("the experiment"), then the probability distribution of X would take the value 0.5 (1 in 2 or 1/2) for X = heads, and 0.5 for X = tails (assuming that the coin is fair). More commonly, probability distributions are used to compare the relative occurrence of many different random ...

  6. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The entropy of the unknown result of the next toss of the coin is maximized if the coin is fair (that is, if heads and tails both have equal probability 1/2). This is the situation of maximum uncertainty as it is most difficult to predict the outcome of the next toss; the result of each toss of the coin delivers one full bit of information.

  7. Notation in probability and statistics - Wikipedia

    en.wikipedia.org/wiki/Notation_in_probability...

    The probability is sometimes written to distinguish it from other functions and measure P to avoid having to define "P is a probability" and () is short for ({: ()}), where is the event space, is a random variable that is a function of (i.e., it depends upon ), and is some outcome of interest within the domain specified by (say, a particular ...

  8. Penney's game - Wikipedia

    en.wikipedia.org/wiki/Penney's_game

    Player A selects a sequence of heads and tails (of length 3 or larger), and shows this sequence to player B. Player B then selects another sequence of heads and tails of the same length. Subsequently, a fair coin is tossed until either player A's or player B's sequence appears as a consecutive subsequence of the coin toss outcomes. The player ...

  9. Bernoulli process - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_process

    This probability is commonly called the Bernoulli measure. [ 2 ] Note that the probability of any specific, infinitely long sequence of coin flips is exactly zero; this is because lim n → ∞ p n = 0 {\displaystyle \lim _{n\to \infty }p^{n}=0} , for any 0 ≤ p < 1 {\displaystyle 0\leq p<1} .