enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bernoulli process - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_process

    This probability is commonly called the Bernoulli measure. [ 2 ] Note that the probability of any specific, infinitely long sequence of coin flips is exactly zero; this is because lim n → ∞ p n = 0 {\displaystyle \lim _{n\to \infty }p^{n}=0} , for any 0 ≤ p < 1 {\displaystyle 0\leq p<1} .

  3. Bernoulli distribution - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_distribution

    It can be used to represent a (possibly biased) coin toss where 1 and 0 would represent "heads" and "tails", respectively, and p would be the probability of the coin landing on heads (or vice versa where 1 would represent tails and p would be the probability of tails). In particular, unfair coins would have /

  4. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The entropy of the unknown result of the next toss of the coin is maximized if the coin is fair (that is, if heads and tails both have equal probability 1/2). This is the situation of maximum uncertainty as it is most difficult to predict the outcome of the next toss; the result of each toss of the coin delivers one full bit of information.

  5. Checking whether a coin is fair - Wikipedia

    en.wikipedia.org/wiki/Checking_whether_a_coin_is...

    (Note: r is the probability of obtaining heads when tossing the same coin once.) Plot of the probability density f(r | H = 7, T = 3) = 1320 r 7 (1 − r) 3 with r ranging from 0 to 1. The probability for an unbiased coin (defined for this purpose as one whose probability of coming down heads is somewhere between 45% and 55%)

  6. Independent and identically distributed random variables

    en.wikipedia.org/wiki/Independent_and...

    Identically distributed: Regardless of whether the coin is fair (with a probability of 1/2 for heads) or biased, as long as the same coin is used for each flip, the probability of getting heads remains consistent across all flips. Such a sequence of i.i.d. variables is also called a Bernoulli process.

  7. Fair coin - Wikipedia

    en.wikipedia.org/wiki/Fair_coin

    A fair coin, when tossed, should have an equal chance of landing either side up. In probability theory and statistics, a sequence of independent Bernoulli trials with probability 1/2 of success on each trial is metaphorically called a fair coin. One for which the probability is not 1/2 is called a biased or unfair coin.

  8. Notation in probability and statistics - Wikipedia

    en.wikipedia.org/wiki/Notation_in_probability...

    The probability is sometimes written to distinguish it from other functions and measure P to avoid having to define "P is a probability" and () is short for ({: ()}), where is the event space, is a random variable that is a function of (i.e., it depends upon ), and is some outcome of interest within the domain specified by (say, a particular ...

  9. Bertrand's box paradox - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_box_paradox

    The two remaining possibilities are equally likely. So the probability that the box is GG, and the other coin is also gold, is ⁠1/2⁠. The reasoning for the 2/3 is as follows: Originally, all six coins were equally likely to be chosen. The chosen coin cannot be from drawer S of box GS, or from either drawer of box SS.