Search results
Results from the WOW.Com Content Network
A polygon has exactly one internal angle per vertex. If every internal angle of a simple polygon is less than a straight angle (π radians or 180°), then the polygon is called convex. In contrast, an external angle (also called a turning angle or exterior angle) is an angle formed by one side of a simple polygon and a line extended from an ...
The measure of an exterior angle of a triangle is equal to the sum of the measures of the two interior angles that are not adjacent to it; this is the exterior angle theorem. [34] The sum of the measures of the three exterior angles (one for each vertex) of any triangle is 360 degrees, and indeed, this is true for any convex polygon, no matter ...
In a Euclidean space, the sum of angles of a triangle equals a straight angle (180 degrees, π radians, two right angles, or a half-turn). A triangle has three angles, one at each vertex, bounded by a pair of adjacent sides. It was unknown for a long time whether other geometries exist, for which this sum is different. The influence of this ...
Therefore, triangle VOA is isosceles, so angle ∠BVA (the inscribed angle) and angle ∠VAO are equal; let each of them be denoted as ψ. Angles ∠BOA and ∠AOV are supplementary, summing to a straight angle (180°), so angle ∠AOV measures 180° − θ. The three angles of triangle VOA must sum to 180°:
The sum of the angles of a triangle is equal to a straight angle (180 degrees). [14] This causes an equilateral triangle to have three interior angles of 60 degrees. Also, it causes every triangle to have at least two acute angles and up to one obtuse or right angle.
In Euclidean geometry, the two acute angles in a right triangle are complementary because the sum of internal angles of a triangle is 180 degrees, and the right angle accounts for 90 degrees. The adjective complementary is from the Latin complementum , associated with the verb complere , "to fill up".
The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.
Although originally formulated only for internal angle bisectors, it works for many (but not all) cases when, instead, two external angle bisectors are equal. The 30-30-120 isosceles triangle makes a boundary case for this variation of the theorem, as it has four equal angle bisectors (two internal, two external). [29]