enow.com Web Search

  1. Ads

    related to: uncogent vs strong quizlet math problems grade 2
  2. teacherspayteachers.com has been visited by 100K+ users in the past month

    • Assessment

      Creative ways to see what students

      know & help them with new concepts.

    • Lessons

      Powerpoints, pdfs, and more to

      support your classroom instruction.

    • Packets

      Perfect for independent work!

      Browse our fun activity packs.

    • Worksheets

      All the printables you need for

      math, ELA, science, and much more.

Search results

  1. Results from the WOW.Com Content Network
  2. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.

  3. Millennium Prize Problems - Wikipedia

    en.wikipedia.org/wiki/Millennium_Prize_Problems

    The Millennium Prize Problems are seven well-known complex mathematical problems selected by the Clay Mathematics Institute in 2000. The Clay Institute has pledged a US $1 million prize for the first correct solution to each problem.

  4. Logical reasoning - Wikipedia

    en.wikipedia.org/wiki/Logical_reasoning

    This support comes in degrees: strong arguments make the conclusion very likely, as is the case for well-researched issues in the empirical sciences. [ 1 ] [ 16 ] Some theorists give a very wide definition of logical reasoning that includes its role as a cognitive skill responsible for high-quality thinking.

  5. Hilbert's problems - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_problems

    Problems 1, 2, 5, 6, [a] 9, 11, 12, 15, and 22 have solutions that have partial acceptance, but there exists some controversy as to whether they resolve the problems. That leaves 8 (the Riemann hypothesis), 13 and 16 [b] unresolved. Problems 4 and 23 are considered as too vague to ever be described as solved; the withdrawn 24 would also be in ...

  6. Hilbert's second problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_second_problem

    In mathematics, Hilbert's second problem was posed by David Hilbert in 1900 as one of his 23 problems. It asks for a proof that arithmetic is consistent – free of any internal contradictions. Hilbert stated that the axioms he considered for arithmetic were the ones given in Hilbert (1900) , which include a second order completeness axiom.

  7. Glossary of mathematical jargon - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    Finally, the adjective strong or the adverb strongly may be added to a mathematical notion to indicate a related stronger notion; for example, a strong antichain is an antichain satisfying certain additional conditions, and likewise a strongly regular graph is a regular graph meeting stronger conditions. When used in this way, the stronger ...

  8. Open problem - Wikipedia

    en.wikipedia.org/wiki/Open_problem

    [2] [3] An important open mathematics problem solved in the early 21st century is the Poincaré conjecture. Open problems exist in all scientific fields. For example, one of the most important open problems in biochemistry is the protein structure prediction problem [ 4 ] [ 5 ] – how to predict a protein 's structure from its sequence.

  9. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    One of the widely used types of impossibility proof is proof by contradiction.In this type of proof, it is shown that if a proposition, such as a solution to a particular class of equations, is assumed to hold, then via deduction two mutually contradictory things can be shown to hold, such as a number being both even and odd or both negative and positive.

  1. Ads

    related to: uncogent vs strong quizlet math problems grade 2