Search results
Results from the WOW.Com Content Network
In physics (specifically electromagnetism), Gauss's law, also known as Gauss's flux theorem (or sometimes Gauss's theorem), is one of Maxwell's equations. It is an application of the divergence theorem , and it relates the distribution of electric charge to the resulting electric field .
In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, [1] is a theorem relating the flux of a vector field through a closed surface to the divergence of the field in the volume enclosed.
Electric field from positive to negative charges. Gauss's law describes the relationship between an electric field and electric charges: an electric field points away from positive charges and towards negative charges, and the net outflow of the electric field through a closed surface is proportional to the enclosed charge, including bound charge due to polarization of material.
It is named after the mathematician Carl Friedrich Gauss. The graph of a Gaussian is a characteristic symmetric " bell curve " shape. The parameter a is the height of the curve's peak, b is the position of the center of the peak, and c (the standard deviation , sometimes called the Gaussian RMS width) controls the width of the "bell".
This is an accepted version of this page This is the latest accepted revision, reviewed on 14 February 2025. German mathematician, astronomer, geodesist, and physicist (1777–1855) "Gauss" redirects here. For other uses, see Gauss (disambiguation). Carl Friedrich Gauss Portrait by Christian Albrecht Jensen, 1840 (copy from Gottlieb Biermann, 1887) Born Johann Carl Friedrich Gauss (1777-04-30 ...
Fields of application: ... is obtained by using Hans Heinrich Bürmann's theorem: [7] ... and its meaning as asymptotic expansion is that for any integer ...
Chern–Gauss–Bonnet theorem (differential geometry) Classification of symmetric spaces ; Darboux's theorem (symplectic topology) Euler's theorem (differential geometry) Four-vertex theorem (differential geometry) Frobenius theorem ; Gauss's lemma (riemannian geometry) Gauss's Theorema Egregium (differential geometry)
Gauss's Theorema egregium (Latin: "remarkable theorem") states that Gaussian curvature of a surface can be determined from the measurements of length on the surface itself. In fact, it can be found given the full knowledge of the first fundamental form and expressed via the first fundamental form and its partial derivatives of