enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Zero to the power of zero - Wikipedia

    en.wikipedia.org/wiki/Zero_to_the_power_of_zero

    [22] Knuth (1992) contends more strongly that 0 0 "has to be 1"; he draws a distinction between the value 0 0, which should equal 1, and the limiting form 0 0 (an abbreviation for a limit of f(t) g(t) where f(t), g(t) → 0), which is an indeterminate form: "Both Cauchy and Libri were right, but Libri and his defenders did not understand why ...

  3. Talk:0.999.../Arguments/Archive 10 - Wikipedia

    en.wikipedia.org/wiki/Talk:0.999.../Arguments/...

    The sequence converges, but the line with slope 1-0.999..., while non-parallel to A, does not intersect line A. Euclid would not like this. The sequence converges and the line with slope 1-0.999..., while parallel to A, is not equal to B. That's two lines parallel to A through the origin, something Euclid wouldn't be happy with either.

  4. Undefined (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Undefined_(mathematics)

    This operation is undefined in arithmetic, and therefore deductions based on division by zero can be contradictory. If we assume that a non-zero answer n {\displaystyle n} exists, when some number k ∣ k ≠ 0 {\displaystyle k\mid k\neq 0} is divided by zero, then that would imply that k = n × 0 {\displaystyle k=n\times 0} .

  5. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    A critical point of a function of a single real variable, f (x), is a value x 0 in the domain of f where f is not differentiable or its derivative is 0 (i.e. ′ =). [2] A critical value is the image under f of a critical point.

  6. Indeterminate form - Wikipedia

    en.wikipedia.org/wiki/Indeterminate_form

    The right-hand side is of the form /, so L'Hôpital's rule applies to it. Note that this equation is valid (as long as the right-hand side is defined) because the natural logarithm (ln) is a continuous function ; it is irrelevant how well-behaved f {\displaystyle f} and g {\displaystyle g} may (or may not) be as long as f {\displaystyle f} is ...

  7. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    The steepness of the hill represents the slope of the function at that point. The instrument used to measure steepness is differentiation. The direction they choose to travel in aligns with the gradient of the function at that point. The amount of time they travel before taking another measurement is the step size.

  8. Fermat's theorem (stationary points) - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem...

    A function graph with lines tangent to the minimum and maximum. Fermat's theorem guarantees that the slope of these lines will always be zero.. In mathematics, Fermat's theorem (also known as interior extremum theorem) is a theorem which states that at the local extrema of a differentiable function, its derivative is always zero.

  9. Linear function (calculus) - Wikipedia

    en.wikipedia.org/wiki/Linear_function_(calculus)

    The slope a measures the rate of change of the output y per unit change in the input x. In the graph, moving one unit to the right (increasing x by 1) moves the y-value up by a: that is, (+) = +. Negative slope a indicates a decrease in y for each increase in x.