Search results
Results from the WOW.Com Content Network
Being templates, they can be used to store arbitrary elements, such as integers or custom classes. The following containers are defined in the current revision of the C++ standard: unordered_set, unordered_map, unordered_multiset, unordered_multimap. Each of these containers differ only on constraints placed on their elements.
similar to a set, multiset, map, or multimap, respectively, but implemented using a hash table; keys are not ordered, but a hash function must exist for the key type. These types were left out of the C++ standard; similar containers were standardized in C++11, but with different names (unordered_set and unordered_map). Other types of containers ...
Added in C++20. Provides the class template std::span, a non-owning view that refers to any contiguous range. <stack> Provides the container adapter class std::stack, a stack. <unordered_map> Added in C++11 and TR1. Provides the container class template std::unordered_map and std::unordered_multimap, hash tables. <unordered_set> Added in C++11 ...
This page was last edited on 6 December 2011, at 12:57 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
In C++, the Standard Template Library (STL) provides the set template class, which is typically implemented using a binary search tree (e.g. red–black tree); SGI's STL also provides the hash_set template class, which implements a set using a hash table. C++11 has support for the unordered_set template class, which is implemented using a hash ...
The idea, due to Musser, is to set a limit on the maximum depth of recursion. [32] If that limit is exceeded, then sorting is continued using the heapsort algorithm. Musser proposed that the limit should be 1 + 2 ⌊ log 2 ( n ) ⌋ {\displaystyle 1+2\lfloor \log _{2}(n)\rfloor } , which is approximately twice the maximum recursion depth ...
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
If the data structure is instead viewed as a partition of a set, then the MakeSet operation enlarges the set by adding the new element, and it extends the existing partition by putting the new element into a new subset containing only the new element. In a disjoint-set forest, MakeSet initializes the node's parent pointer and the node's size or ...