Search results
Results from the WOW.Com Content Network
Source lines of code (SLOC), also known as lines of code (LOC), is a software metric used to measure the size of a computer program by counting the number of lines in the text of the program's source code.
In queueing theory, the Engset formula is used to determine the blocking probability of an M/M/c/c/N queue (in Kendall's notation). The formula is named after its developer, T. O. Engset . Example application
In information theory, the noisy-channel coding theorem (sometimes Shannon's theorem or Shannon's limit), establishes that for any given degree of noise contamination of a communication channel, it is possible (in theory) to communicate discrete data (digital information) nearly error-free up to a computable maximum rate through the channel.
In mathematical queueing theory, Little's law (also result, theorem, lemma, or formula [1] [2]) is a theorem by John Little which states that the long-term average number L of customers in a stationary system is equal to the long-term average effective arrival rate λ multiplied by the average time W that a customer spends in the system.
This formula's way of introducing frequency-dependent noise cannot describe all continuous-time noise processes. For example, consider a noise process consisting of adding a random wave whose amplitude is 1 or −1 at any point in time, and a channel that adds such a wave to the source signal. Such a wave's frequency components are highly ...
In information theory, the source coding theorem (Shannon 1948) [2] informally states that (MacKay 2003, pg. 81, [3] Cover 2006, Chapter 5 [4]): N i.i.d. random variables each with entropy H(X) can be compressed into more than N H(X) bits with negligible risk of information loss, as N → ∞; but conversely, if they are compressed into fewer than N H(X) bits it is virtually certain that ...
Scalability Issues: While it highlights the limits of parallel speedup, it doesn't address practical scalability issues, such as the cost and complexity of adding more processors. Non-Parallelizable Work : Amdahl's Law emphasizes the non-parallelizable portion of the task as a bottleneck but doesn’t provide solutions for reducing or ...
In queueing theory, a discipline within the mathematical theory of probability, the M/M/c queue (or Erlang–C model [1]: 495 ) is a multi-server queueing model. [2] In Kendall's notation it describes a system where arrivals form a single queue and are governed by a Poisson process, there are c servers, and job service times are exponentially distributed. [3]