Ads
related to: quadrilateral problems ks2 worksheetkutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
The quadrilateral case follows from a simple extension of the Japanese theorem for cyclic quadrilaterals, which shows that a rectangle is formed by the two pairs of incenters corresponding to the two possible triangulations of the quadrilateral. The steps of this theorem require nothing beyond basic constructive Euclidean geometry. [2]
In geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral (four-sided polygon) whose vertices all lie on a single circle, making the sides chords of the circle. This circle is called the circumcircle or circumscribed circle , and the vertices are said to be concyclic .
It divides the quadrilateral into two congruent triangles that are mirror images of each other. [7] One diagonal bisects both of the angles at its two ends. [7] Kite quadrilaterals are named for the wind-blown, flying kites, which often have this shape [10] [11] and which are in turn named for a hovering bird and the sound it makes.
A quadric quadrilateral is a convex quadrilateral whose four vertices all lie on the perimeter of a square. [7] A diametric quadrilateral is a cyclic quadrilateral having one of its sides as a diameter of the circumcircle. [8] A Hjelmslev quadrilateral is a quadrilateral with two right angles at opposite vertices. [9]
Ptolemy's theorem is a relation among these lengths in a cyclic quadrilateral. = + In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle).
The special case of the theorem for quadrilaterals states that the two pairs of opposite incircles of the theorem above have equal sums of radii. To prove the quadrilateral case, simply construct the parallelogram tangent to the corners of the constructed rectangle, with sides parallel to the diagonals of the quadrilateral.
Pitot's theorem states that, for these quadrilaterals, the two sums of lengths of opposite sides are the same. Both sums of lengths equal the semiperimeter of the quadrilateral. [2] The converse implication is also true: whenever a convex quadrilateral has pairs of opposite sides with the same sums of lengths, it has an inscribed circle ...
An antiparallelogram is a special case of a crossed quadrilateral, with two pairs of equal-length edges. [3] In general, crossed quadrilaterals can have unequal edges. [3] Special forms of the antiparallelogram are the crossed rectangles and crossed squares, obtained by replacing two opposite sides of a rectangle or square by the two diagonals.
Ads
related to: quadrilateral problems ks2 worksheetkutasoftware.com has been visited by 10K+ users in the past month