Search results
Results from the WOW.Com Content Network
The Hermitian Laplacian matrix is a key tool in this context, as it is used to analyze the spectra of mixed graphs. [4] The Hermitian-adjacency matrix of a mixed graph is another important concept, as it is a Hermitian matrix that plays a role in studying the energies of mixed graphs. [5]
In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an complex matrix is an matrix obtained by transposing and applying complex conjugation to each entry (the complex conjugate of + being , for real numbers and ).
The fact that any Hermitian complex 2 × 2 matrices can be expressed in terms of the identity matrix and the Pauli matrices also leads to the Bloch sphere representation of 2 × 2 mixed states’ density matrix, (positive semidefinite 2 × 2 matrices with unit trace.
It is the distribution of times the sample Hermitian covariance matrix of zero-mean independent Gaussian random variables. It has support for Hermitian positive definite matrices. [1] The complex Wishart distribution is the density of a complex-valued sample covariance matrix. Let
A gate that acts on qubits (a register) is represented by a unitary matrix, and the set of all such gates with the group operation of matrix multiplication [a] is the unitary group U(2 n). [2] The quantum states that the gates act upon are unit vectors in 2 n {\displaystyle 2^{n}} complex dimensions, with the complex Euclidean norm (the 2-norm ).
In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.
A matrix that is both upper Hessenberg and lower Hessenberg is a tridiagonal matrix, of which the Jacobi matrix is an important example. This includes the symmetric or Hermitian Hessenberg matrices. A Hermitian matrix can be reduced to tri-diagonal real symmetric matrices. [7]
The following tables list several unitary quantum logic gates, together with their common name, how they are represented, and some of their properties. Controlled or conjugate transpose ( adjoint ) versions of some of these gates may not be listed.