Search results
Results from the WOW.Com Content Network
On the far side of the figure, the return current flows from the rotating arm through the far side of the rim to the bottom brush. The B-field induced by this return current opposes the applied B-field, tending to decrease the flux through that side of the circuit, opposing the increase in flux due to rotation. On the near side of the figure ...
Faraday's law is a single equation describing two different phenomena: the motional emf generated by a magnetic force on a moving wire (see the Lorentz force), and the transformer emf generated by an electric force due to a changing magnetic field (described by the Maxwell–Faraday equation).
That is, the back-EMF is also due to inductance and Faraday's law, but occurs even when the motor current is not changing, and arises from the geometric considerations of an armature spinning in a magnetic field. This voltage is in series with and opposes the original applied voltage and is called "back-electromotive force" (by Lenz's law).
Because the induced voltage is greatest when the current is increasing, the voltage and current waveforms are out of phase; the voltage peaks occur earlier in each cycle than the current peaks. The phase difference between the current and the induced voltage is ϕ = 1 2 π {\displaystyle \phi ={\tfrac {1}{2}}\pi } radians or 90 degrees, showing ...
In electromagnetism, an eddy current (also called Foucault's current) is a loop of electric current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction or by the relative motion of a conductor in a magnetic field. Eddy currents flow in closed loops within conductors, in planes ...
An emf is induced in a coil or conductor whenever there is change in the flux linkages. Depending on the way in which the changes are brought about, there are two types: When the conductor is moved in a stationary magnetic field to procure a change in the flux linkage, the emf is statically induced.
The net electric current I is the surface integral of the electric current density J passing through Σ: =, where dS denotes the differential vector element of surface area S, normal to surface Σ. (Vector area is sometimes denoted by A rather than S , but this conflicts with the notation for magnetic vector potential ).
This means that the direction of the back EMF of an induced field opposes the changing current that is its cause. D.J. Griffiths summarized it as follows: Nature abhors a change in flux. [7] If a change in the magnetic field of current i 1 induces another electric current, i 2, the direction of i 2 is opposite that of the change in i 1.