enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Paden–Kahan subproblems - Wikipedia

    en.wikipedia.org/wiki/Paden–Kahan_subproblems

    Paden–Kahan subproblems are a set of solved geometric problems which occur frequently in inverse kinematics of common robotic manipulators. [1] Although the set of problems is not exhaustive, it may be used to simplify inverse kinematic analysis for many industrial robots. [2] Beyond the three classical subproblems several others have been ...

  3. Inverse kinematics - Wikipedia

    en.wikipedia.org/wiki/Inverse_kinematics

    Forward vs. inverse kinematics. In computer animation and robotics, inverse kinematics is the mathematical process of calculating the variable joint parameters needed to place the end of a kinematic chain, such as a robot manipulator or animation character's skeleton, in a given position and orientation relative to the start of the chain.

  4. Inverse dynamics - Wikipedia

    en.wikipedia.org/wiki/Inverse_dynamics

    Kinematics; Inverse kinematics: a problem similar to Inverse dynamics but with different goals and starting assumptions.While inverse dynamics asks for torques that produce a certain time-trajectory of positions and velocities, inverse kinematics only asks for a static set of joint angles such that a certain point (or a set of points) of the character (or robot) is positioned at a certain ...

  5. 321 kinematic structure - Wikipedia

    en.wikipedia.org/wiki/321_kinematic_structure

    An arm design that does not follow these design rules typically requires an iterative algorithm to solve the inverse kinematics problem. The 321 design is an example of a 6R wrist-partitioned manipulator: the three wrist joints intersect, the two shoulder and elbow joints are parallel, the first joint intersects the first shoulder joint ...

  6. Robot kinematics - Wikipedia

    en.wikipedia.org/wiki/Robot_kinematics

    A fundamental tool in robot kinematics is the kinematics equations of the kinematic chains that form the robot. These non-linear equations are used to map the joint parameters to the configuration of the robot system. Kinematics equations are also used in biomechanics of the skeleton and computer animation of articulated characters.

  7. Kinematic chain - Wikipedia

    en.wikipedia.org/wiki/Kinematic_chain

    Kinematic chains of a wide range of complexity are analyzed by equating the kinematics equations of serial chains that form loops within the kinematic chain. These equations are often called loop equations. The complexity (in terms of calculating the forward and inverse kinematics) of the chain is determined by the following factors:

  8. Product of exponentials formula - Wikipedia

    en.wikipedia.org/.../Product_of_exponentials_formula

    For each joint of the kinematic chain, an origin point q and an axis of action are selected for the zero configuration, using the coordinate frame of the base. In the case of a prismatic joint, the axis of action v is the vector along which the joint extends; in the case of a revolute joint, the axis of action ω the vector normal to the rotation.

  9. Kinematics equations - Wikipedia

    en.wikipedia.org/wiki/Kinematics_equations

    The second called inverse kinematics uses the position and orientation of the end-effector to compute the joint parameters values. Remarkably, while the forward kinematics of a serial chain is a direct calculation of a single matrix equation, the forward kinematics of a parallel chain requires the simultaneous solution of multiple matrix ...