Search results
Results from the WOW.Com Content Network
Farey sequences are very useful to find rational approximations of irrational numbers. [15] For example, the construction by Eliahou [16] of a lower bound on the length of non-trivial cycles in the 3x+1 process uses Farey sequences to calculate a continued fraction expansion of the number log 2 (3).
An Egyptian fraction is the sum of a finite number of reciprocals of positive integers. According to the proof of the Erdős–Graham problem, if the set of integers greater than one is partitioned into finitely many subsets, then one of the subsets can be used to form an Egyptian fraction representation of 1.
In words, the sequence of Pell numbers starts with 0 and 1, and then each Pell number is the sum of twice the previous Pell number, plus the Pell number before that. The first few terms of the sequence are 0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, … (sequence A000129 in the OEIS).
The sequence {} is then called an exceptional sequence for the continued fraction. See Chapter 2 of Lorentzen & Waadeland (1992) for a rigorous definition. There also exists a notion of absolute convergence for continued fractions, which is based on the notion of absolute convergence of a series: a continued fraction is said to be absolutely ...
To calculate a Pythagorean triple, take any term of this sequence and convert it to an improper fraction (for mixed number , the corresponding improper fraction is ). Then its numerator and denominator are the sides, b and a , of a right triangle, and the hypotenuse is b + 1 .
Find recurrence relations for sequences—the form of a generating function may suggest a recurrence formula. Find relationships between sequences—if the generating functions of two sequences have a similar form, then the sequences themselves may be related. Explore the asymptotic behaviour of sequences. Prove identities involving sequences.
The proof of Rademacher's formula involves Ford circles, Farey sequences, modular symmetry and the Dedekind eta function. It may be shown that the k {\displaystyle k} th term of Rademacher's series is of the order exp ( π k 2 n 3 ) , {\displaystyle \exp \left({\frac {\pi }{k}}{\sqrt {\frac {2n}{3}}}\right),} so that the first term gives ...
As in the binary search technique for generating the Stern–Brocot tree, the Farey sequences can be constructed using mediants: the Farey sequence of order n + 1 is formed from the Farey sequence of order n by computing the mediant of each two consecutive values in the Farey sequence of order n, keeping the subset of mediants that have ...