Search results
Results from the WOW.Com Content Network
Natural language processing (NLP) is a subfield of computer science and especially artificial intelligence.It is primarily concerned with providing computers with the ability to process data encoded in natural language and is thus closely related to information retrieval, knowledge representation and computational linguistics, a subfield of linguistics.
Natural-language programming (NLP) is an ontology-assisted way of programming in terms of natural-language sentences, e.g. English. [1] A structured document with Content, sections and subsections for explanations of sentences forms a NLP document, which is actually a computer program. Natural language programming is not to be mixed up with ...
Artificial intelligence (AI), in its broadest sense, is intelligence exhibited by machines, particularly computer systems.It is a field of research in computer science that develops and studies methods and software that enable machines to perceive their environment and use learning and intelligence to take actions that maximize their chances of achieving defined goals. [1]
Linguamatics – provider of natural language processing (NLP) based enterprise text mining and text analytics software, I2E, for high-value knowledge discovery and decision support. Mathematica – provides built in tools for text alignment, pattern matching, clustering and semantic analysis.
NLP makes use of computers, image scanners, microphones, and many types of software programs. Language technology – consists of natural-language processing (NLP) and computational linguistics (CL) on the one hand, and speech technology on the other. It also includes many application oriented aspects of these.
In a July 2023 briefing of the United Nations Security Council, Secretary-General António Guterres stated "Generative AI has enormous potential for good and evil at scale", that AI may "turbocharge global development" and contribute between $10 and $15 trillion to the global economy by 2030, but that its malicious use "could cause horrific ...
For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...
Based on these RNN-based architectures, Baidu launched the "first large-scale NMT system" [23]: 144 in 2015, followed by Google Neural Machine Translation in 2016. [23]: 144 [24] From that year on, neural models also became the prevailing choice in the main machine translation conference Workshop on Statistical Machine Translation. [25]