Search results
Results from the WOW.Com Content Network
Notice that the actual constraint graph representing this problem must contain two edges between X and Y since C2 is undirected but the graph representation being used by AC-3 is directed. AC-3 solves the problem by first removing the non-even values from of the domain of X as required by C1, leaving D(X) = { 0, 2, 4 }. It then examines the ...
The most popular constraint propagation method is the AC-3 algorithm, which enforces arc consistency. Local search methods are incomplete satisfiability algorithms. They may find a solution of a problem, but they may fail even if the problem is satisfiable. They work by iteratively improving a complete assignment over the variables.
Constraint logic programming is a form of constraint programming, in which logic programming is extended to include concepts from constraint satisfaction. A constraint logic program is a logic program that contains constraints in the body of clauses. An example of a clause including a constraint is A (X, Y):-X + Y > 0, B (X), C (Y).
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.
Tabu search [1] [2] [3] overcomes this problem by maintaining a list of "forbidden" assignments, called the tabu list. In particular, the tabu list typically contains only the most recent changes. More precisely, it contains the last variable-value pair such that the variable has been recently assigned to the value.
Constraint propagation in constraint satisfaction problems is a typical example of a refinement model, and formula evaluation in spreadsheets are a typical example of a perturbation model. The refinement model is more general, as it does not restrict variables to have a single value, it can lead to several solutions to the same problem.
In constraint logic programming, lists are allowed as values of variables. A constraint element(I, L, X) is satisfied if L is a list and X is the I-th element of this list. Specialized constraint propagation rules for these constraints exist. As an example, if L and I are reduced to a single-value domain, a unique value for X can be
[3] [4] Steven Minton and Andy Philips analyzed the neural network algorithm and separated it into two phases: (1) an initial assignment using a greedy algorithm and (2) a conflict minimization phases (later to be called "min-conflicts"). A paper was written and presented at AAAI-90; Philip Laird provided the mathematical analysis of the algorithm.