Search results
Results from the WOW.Com Content Network
Notice that the actual constraint graph representing this problem must contain two edges between X and Y since C2 is undirected but the graph representation being used by AC-3 is directed. AC-3 solves the problem by first removing the non-even values from of the domain of X as required by C1, leaving D(X) = { 0, 2, 4 }.
The most popular constraint propagation method is the AC-3 algorithm, which enforces arc consistency. Local search methods are incomplete satisfiability algorithms. They may find a solution of a problem, but they may fail even if the problem is satisfiable. They work by iteratively improving a complete assignment over the variables.
Constraint logic programming is a form of constraint programming, in which logic programming is extended to include concepts from constraint satisfaction. A constraint logic program is a logic program that contains constraints in the body of clauses. An example of a clause including a constraint is A (X, Y):-X + Y > 0, B (X), C (Y).
Cost transfer algorithms have been shown to be particularly efficient to solve real-world problem when soft constraints are binary or ternary (maximal arity of constraints in the problem is equal to 2 or 3). For soft constraints of large arity, cost transfer becomes a serious issue because the risk of combinatorial explosion has to be controlled.
Constraint propagation in constraint satisfaction problems is a typical example of a refinement model, and formula evaluation in spreadsheets are a typical example of a perturbation model. The refinement model is more general, as it does not restrict variables to have a single value, it can lead to several solutions to the same problem.
On the other hand, 3-consistency coincides with path consistency only if all constraints are binary, because path consistency does not involve ternary constraints while 3-consistency does. Another way of generalizing arc consistency is hyper-arc consistency or generalized arc consistency , which requires extendibility of a single variable in ...
A binary constraint, in mathematical optimization, is a constraint that involves exactly two variables. For example, consider the n-queens problem, where the goal is to place n chess queens on an n-by-n chessboard such that none of the queens can attack each other (horizontally, vertically, or diagonally). The formal set of constraints are ...
Constraints with one, two, or more variables are called unary, binary, or higher-order constraints. The number of variables in a constraint is called its arity. The hidden transformation replaces each constraint with a new, hidden variable. The hidden transformation converts an arbitrary constraint satisfaction problem into a binary one.