Search results
Results from the WOW.Com Content Network
The emission wavelength of the tunable diode laser, viz. VCSEL, DFB, etc., is tuned over the characteristic absorption lines of a species in the gas in the path of the laser beam. This causes a reduction of the measured signal intensity due to absorption, which can be detected by a photodiode , and then used to determine the gas concentration ...
The dye laser is considered to be the first broadly tunable laser. A tunable laser is a laser whose wavelength of operation can be altered in a controlled manner. While all laser gain media allow small shifts in output wavelength, only a few types of lasers allow continuous tuning over a significant wavelength range.
Optically pumped semiconductor laser 920 nm-1.35 μm Laser diode Projection, life sciences, forensic analysis, spectroscopy, eye surgery, laser light shows. The lasing medium is a semiconductor chip. Frequency doubling or tripling is typically done to produce visible or ultraviolet radiation. Power levels of several watts are possible.
Laser absorption spectrometry (LAS) refers to techniques that use lasers to assess the concentration or amount of a species in gas phase by absorption spectrometry (AS). Optical spectroscopic techniques in general, and laser-based techniques in particular, have a great potential for detection and monitoring of constituents in gas phase .
Part of a Ti:sapphire oscillator. The Ti:sapphire crystal is the bright red light source on the left. The green light is from the pump diode. Titanium-sapphire lasers (also known as Ti:sapphire lasers, Ti:Al 2 O 3 lasers or Ti:sapphs) are tunable lasers which emit red and near-infrared light in the range from 650 to 1100 nanometers.
A tunable laser could function at any wavelength, eliminating the cost of manufacturing and the logistics of maintaining up to 80 different parts. [6] This is the case since tunability offers a more flexible and less costly operation. Given the large venture capital investments of the time, dozens of approaches and technologies were proposed.
Laser spectroscopy uses tunable lasers [24] and other types of coherent emission sources, such as optical parametric oscillators, [25] for selective excitation of atomic or molecular species. Light scattering spectroscopy (LSS) is a spectroscopic technique typically used to evaluate morphological changes in epithelial cells in order to study ...
The Raman microscope is a laser-based microscopic device used to perform Raman spectroscopy. [1] The term MOLE (molecular optics laser examiner) is used to refer to the Raman-based microprobe. [1] The technique used is named after C. V. Raman, who discovered the scattering properties in liquids. [2]