enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orders of magnitude (numbers) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(numbers)

    1/52! chance of a specific shuffle Mathematics: The chances of shuffling a standard 52-card deck in any specific order is around 1.24 × 10 −68 (or exactly 1 ⁄ 52!) [4] Computing: The number 1.4 × 10 −45 is approximately equal to the smallest positive non-zero value that can be represented by a single-precision IEEE floating-point value.

  3. Logarithmic scale - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_scale

    The top left graph is linear in the X- and Y-axes, and the Y-axis ranges from 0 to 10. A base-10 log scale is used for the Y-axis of the bottom left graph, and the Y-axis ranges from 0.1 to 1000. The top right graph uses a log-10 scale for just the X-axis, and the bottom right graph uses a log-10 scale for both the X axis and the Y-axis.

  4. Logarithmic decrement - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_decrement

    The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.

  5. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x. [2] [3] Parentheses are sometimes added for clarity, giving ln(x), log e (x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.

  6. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    1 in 1 744 278: Every 4776 years (once in recorded history) μ ± 5.5σ: 0.999 999 962 020 875: 3.798 × 10 −8 = 37.98 ppb: 1 in 26 330 254: Every 72 090 years (thrice in history of modern humankind) μ ± 6σ: 0.999 999 998 026 825: 1.973 × 10 −9 = 1.973 ppb: 1 in 506 797 346: Every 1.38 million years (twice in history of humankind) μ ± ...

  7. LogMAR chart - Wikipedia

    en.wikipedia.org/wiki/LogMAR_chart

    The chart was designed by Ian Bailey [5] and Jan E. Lovie-Kitchin at the National Vision Research Institute of Australia. [1] [3] They described their motivation for designing the LogMAR chart as follows: "We have designed a series of near vision charts in which the typeface, size progression, size range, number of words per row and spacings were chosen in an endeavour to achieve a ...

  8. Orders of magnitude (length) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(length)

    The micrometre (SI symbol: μm) is a unit of length in the metric system equal to 10 −6 metres (⁠ 1 / 1 000 000 ⁠ m = 0. 000 001 m). To help compare different orders of magnitude , this section lists some items with lengths between 10 −6 and 10 −5 m (between 1 and 10 micrometers , or μm).

  9. English numerals - Wikipedia

    en.wikipedia.org/wiki/English_numerals

    So too are the thousands, with the number of thousands followed by the word "thousand". The number one thousand may be written 1 000 or 1000 or 1,000; larger numbers are written for example 10 000 or 10,000 for ease of reading.