Search results
Results from the WOW.Com Content Network
The energy released by this highly exergonic oxidation reaction drives the endergonic second reaction (ΔG°'=+50 kJ/mol (+12kcal/mol)), in which a molecule of inorganic phosphate is transferred to the GAP intermediate to form a product with high phosphoryl-transfer potential: 1,3-bisphosphoglycerate (1,3-BPG).
In the glycolytic pathway, 1,3-BPG is the phosphate donor and has a high phosphoryl-transfer potential. The PGK-catalyzed transfer of the phosphate group from 1,3-BPG to ADP to yield ATP can power [clarification needed] the carbon-oxidation reaction of the previous glycolytic step (converting glyceraldehyde 3-phosphate to 3-phosphoglycerate).
The potential difference between these two redox pairs is 1.14 volt, which is equivalent to -52 kcal/mol or -2600 kJ per 6 mol of O 2. When one NADH is oxidized through the electron transfer chain, three ATPs are produced, which is equivalent to 7.3 kcal/mol x 3 = 21.9 kcal/mol.
Substrate-level phosphorylation exemplified with the conversion of ADP to ATP. Substrate-level phosphorylation is a metabolism reaction that results in the production of ATP or GTP supported by the energy released from another high-energy bond that leads to phosphorylation of ADP or GDP to ATP or GTP (note that the reaction catalyzed by creatine kinase is not considered as "substrate-level ...
Consuming excess fructose ultimately results in an imbalance in liver metabolism, which indirectly exhausts the liver cell's supply of ATP. [ 12 ] Allosteric activation by glucose-6-phosphate, which acts as an effector, stimulates glycogen synthase, and glucose-6-phosphate may inhibit the phosphorylation of glycogen synthase by cyclic AMP ...
The P-type ATPases, also known as E 1-E 2 ATPases, are a large group of evolutionarily related ion and lipid pumps that are found in bacteria, archaea, and eukaryotes. [1] P-type ATPases are α-helical bundle primary transporters named based upon their ability to catalyze auto- (or self-) phosphorylation (hence P) of a key conserved aspartate residue within the pump and their energy source ...
Substrate-velocity relationships and induced transport tests have revealed that the dephosphorylated enzyme then facilitates the transfer of a phosphoryl group from the glucose-1,6-bisphosphate intermediate to the enzyme, regenerating phosphorylated phosphoglucomutase and yielding glucose 6-phosphate (in the forward direction).
[2] [3] "Phosphoryl" groups are covalently bonded by a single bond to an organic molecule, phosphate group(s) or another "phosphoryl" group(s), and those groups are sp 3 hybridized at the phosphorus atom. [4] The term "phosphoryl" in the mentioned branches is usually used in the description of catalytic mechanisms in living organisms.