enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shallow water equations - Wikipedia

    en.wikipedia.org/wiki/Shallow_water_equations

    For example, for a rectangular cross section, with constant channel width B and channel bed elevation z b, the cross sectional area is: A = B (ζ − z b) = B h. The instantaneous water depth is h(x,t) = ζ(x,t) − z b (x), with z b (x) the bed level (i.e. elevation of the lowest point in the bed above datum, see the cross-section figure).

  3. Steinmetz solid - Wikipedia

    en.wikipedia.org/wiki/Steinmetz_solid

    The generation of a bicylinder Calculating the volume of a bicylinder. A bicylinder generated by two cylinders with radius r has the volume =, and the surface area [1] [6] =.. The upper half of a bicylinder is the square case of a domical vault, a dome-shaped solid based on any convex polygon whose cross-sections are similar copies of the polygon, and analogous formulas calculating the volume ...

  4. Finite volume method for two dimensional diffusion problem

    en.wikipedia.org/wiki/Finite_volume_method_for...

    The face areas in y two dimensional case are : = = and = =. We obtain the distribution of the property i.e. a given two dimensional situation by writing discretized equations of the form of equation (3) at each grid node of the subdivided domain.

  5. Shell integration - Wikipedia

    en.wikipedia.org/wiki/Shell_integration

    The shell method goes as follows: Consider a volume in three dimensions obtained by rotating a cross-section in the xy-plane around the y-axis. Suppose the cross-section is defined by the graph of the positive function f(x) on the interval [a, b]. Then the formula for the volume will be: ()

  6. Hydraulic diameter - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_diameter

    A is the cross-sectional area of the flow, P is the wetted perimeter of the cross-section. More intuitively, the hydraulic diameter can be understood as a function of the hydraulic radius R H, which is defined as the cross-sectional area of the channel divided by the wetted perimeter. Here, the wetted perimeter includes all surfaces acted upon ...

  7. Cavalieri's principle - Wikipedia

    en.wikipedia.org/wiki/Cavalieri's_principle

    Consequently each horizontal cross-section of the circle has the same length as the corresponding horizontal cross-section of the region bounded by the two arcs of cycloids. By Cavalieri's principle, the circle therefore has the same area as that region. Consider the rectangle bounding a single cycloid arch.

  8. Standard step method - Wikipedia

    en.wikipedia.org/wiki/Standard_Step_Method

    It is important to note that the gradually varied flow equations and associated numerical methods (including the standard step method) cannot accurately model the dynamics of a hydraulic jump. [6] See the Hydraulic jumps in rectangular channels page for more information. Below, an example problem will use conceptual models to build a surface ...

  9. Finite volume method - Wikipedia

    en.wikipedia.org/wiki/Finite_volume_method

    The finite volume method (FVM) is a method for representing and evaluating partial differential equations in the form of algebraic equations. [1] In the finite volume method, volume integrals in a partial differential equation that contain a divergence term are converted to surface integrals, using the divergence theorem. These terms are then ...