Search results
Results from the WOW.Com Content Network
This field causes, by electromagnetic induction, an electric current to flow in the wire loop on the right. The most widespread version of Faraday's law states: The electromotive force around a closed path is equal to the negative of the time rate of change of the magnetic flux enclosed by the path.
Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk Maxwell mathematically described it as Faraday's law of induction .
The direction of an induced current can be determined using the right-hand rule to show which direction of current flow would create a magnetic field that would oppose the direction of changing flux through the loop. [8] In the examples above, if the flux is increasing, the induced field acts in opposition to it.
An electromagnetic field (also EM field) is a physical field, mathematical functions of position and time, representing the influences on and due to electric charges. [1] The field at any point in space and time can be regarded as a combination of an electric field and a magnetic field .
A mechanical analogy in the K = 1 case with magnetic field energy (1/2)Li 2 is a body with mass M, velocity u and kinetic energy (1/2)Mu 2. The rate of change of velocity (current) multiplied with mass (inductance) requires or generates a force (an electrical voltage). Circuit diagram of two mutually coupled inductors.
If the matter field is taken so as to describe the interaction of electromagnetic fields with the Dirac electron given by the four-component Dirac spinor field ψ, the current and charge densities have form: [2] = † = †, where α are the first three Dirac matrices. Using this, we can re-write Maxwell's equations as:
Low-frequency induction can be a dangerous form of inductive coupling when it happens inadvertently. For example, if a long-distance metal pipeline is installed along a right of way in parallel with a high-voltage power line, the power line can induce current on the pipe. Since the pipe is a conductor, insulated by its protective coating from ...
This field causes an electric current to flow in the wire loop by electromagnetic induction. Magnetic fields can also be used to make electric currents. When a changing magnetic field is applied to a conductor, an electromotive force (EMF) is induced, [21]: 1004 which starts an electric current, when there is a suitable path.