Search results
Results from the WOW.Com Content Network
The pocket algorithm then returns the solution in the pocket, rather than the last solution. It can be used also for non-separable data sets, where the aim is to find a perceptron with a small number of misclassifications. However, these solutions appear purely stochastically and hence the pocket algorithm neither approaches them gradually in ...
This article lists common shading algorithms used in computer graphics. Interpolation techniques. These techniques can be combined with any illumination model:
The first "ratchet" is applied to the symmetric root key, the second ratchet to the asymmetric Diffie Hellman (DH) key. [1] In cryptography, the Double Ratchet Algorithm (previously referred to as the Axolotl Ratchet [2] [3]) is a key management algorithm that was developed by Trevor Perrin and Moxie Marlinspike in 2013.
Algorithms used in Computer graphics. See also Category:Computer graphics data structures . Wikimedia Commons has media related to Computer graphic algorithms .
Raster graphic image. In computer graphics, rasterisation (British English) or rasterization (American English) is the task of taking an image described in a vector graphics format (shapes) and converting it into a raster image (a series of pixels, dots or lines, which, when displayed together, create the image which was represented via shapes).
In its simplest form, this is the drawing of two-dimensional curves. The key points, placed by the artist, are used by the computer algorithm to form a smooth curve either through, or near these points. For a typical example of 2-D interpolation through key points see cardinal spline.
In computer graphics, a line drawing algorithm is an algorithm for approximating a line segment on discrete graphical media, such as pixel-based displays and printers. On such media, line drawing requires an approximation (in nontrivial cases). Basic algorithms rasterize lines in one color.
The origin of all the LOD algorithms for 3D computer graphics can be traced back to an article by James H. Clark in the October 1976 issue of Communications of the ACM. At the time, computers were monolithic and rare, and graphics were being driven by researchers.