Search results
Results from the WOW.Com Content Network
Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuous functions).
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous.In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics – such as integers, graphs, and statements in logic [1] – do not vary smoothly in this way, but have distinct, separated values. [2]
For example, if s=2, then 𝜁(s) is the well-known series 1 + 1/4 + 1/9 + 1/16 + …, which strangely adds up to exactly 𝜋²/6. When s is a complex number—one that looks like a+b𝑖, using ...
Formerly, students would begin the year in Math 25 (which was created in 1983 as a lower-level Math 55) and, after three weeks of point-set topology and special topics (for instance, in 1994, p-adic analysis was taught by Wilfried Schmid), students would take a quiz. As of 2012, students may choose to enroll in either Math 25 or Math 55 but are ...
The class of questions where an answer can be verified in polynomial time is "NP", standing for "nondeterministic polynomial time". [ Note 1 ] An answer to the P versus NP question would determine whether problems that can be verified in polynomial time can also be solved in polynomial time.
Discrete mathematics, also called finite mathematics, is the study of mathematical structures that are fundamentally discrete, in the sense of not supporting or requiring the notion of continuity. Most, if not all, of the objects studied in finite mathematics are countable sets , such as integers , finite graphs , and formal languages .
In fact, significant progress (by den Boer, Maurer, Wolf, Boneh and Lipton) has been made towards showing that over many groups the DHP is almost as hard as the DLP. There is no proof to date that either the DHP or the DLP is a hard problem, except in generic groups (by Nechaev and Shoup). A proof that either problem is hard implies that P ≠ NP.