Search results
Results from the WOW.Com Content Network
Curvature of general surfaces was first studied by Euler. In 1760 [4] he proved a formula for the curvature of a plane section of a surface and in 1771 [5] he considered surfaces represented in a parametric form. Monge laid down the foundations of their theory in his classical memoir L'application de l'analyse à la géometrie which
The Monge cone at a given point (x 0, ..., x n) is the zero locus of the equation in the tangent space at the point. The Monge equation is unrelated to the (second-order) Monge–Ampère equation . References
In mathematics, a (real) Monge–Ampère equation is a nonlinear second-order partial differential equation of special kind. A second-order equation for the unknown function u of two variables x,y is of Monge–Ampère type if it is linear in the determinant of the Hessian matrix of u and in the second-order partial derivatives of u.
The Monge gauge has two obvious limitations: If the average surface is not plane, then the Monge gauge only makes sense on length scales smaller than the curvature of the average surface. And the Monge gauge fails completely if the surface is so strongly bent that there are overhangs (points x,y corresponding to more than one z ).
However, Yau's analysis of the complex Monge–Ampère equation in resolving the Calabi conjecture was sufficiently general so as to also resolve the existence of Kähler–Einstein metrics of negative scalar curvature. The third and final case of positive scalar curvature was resolved in the 2010s, in part by making use of the Calabi conjecture.
The product k 1 k 2 of the two principal curvatures is the Gaussian curvature, K, and the average (k 1 + k 2)/2 is the mean curvature, H. If at least one of the principal curvatures is zero at every point, then the Gaussian curvature will be 0 and the surface is a developable surface. For a minimal surface, the mean curvature is zero at every ...
Monge's paper gives the ordinary differential equation of the curves of curvature, and establishes the general theory in a very satisfactory manner; the application to the interesting particular case of the ellipsoid was first made by him in a later paper in 1795. [5]
A point p in a Riemannian submanifold is umbilical if, at p, the (vector-valued) Second fundamental form is some normal vector tensor the induced metric (First fundamental form). Equivalently, for all vectors U , V at p , II( U , V ) = g p ( U , V ) ν {\displaystyle \nu } , where ν {\displaystyle \nu } is the mean curvature vector at p .