Search results
Results from the WOW.Com Content Network
Eddy currents occur when a solid metallic mass is rotated in a magnetic field, because the outer portion of the metal cuts more magnetic lines of force than the inner portion; hence the induced electromotive force is not uniform; this tends to cause electric currents between the points of greatest and least potential. Eddy currents consume a ...
The magnetic Lorentz force v × B drives a current along the conducting radius to the conducting rim, and from there the circuit completes through the lower brush and the axle supporting the disc. This device generates an emf and a current, although the shape of the "circuit" is constant and thus the flux through the circuit does not change ...
This induced voltage created by the changing current has the effect of opposing the change in current. This is stated by Lenz's law , and the voltage is called back EMF . Inductance is defined as the ratio of the induced voltage to the rate of change of current causing it. [ 1 ]
That is, the back-EMF is also due to inductance and Faraday's law, but occurs even when the motor current is not changing, and arises from the geometric considerations of an armature spinning in a magnetic field. This voltage is in series with and opposes the original applied voltage and is called "back-electromotive force" (by Lenz's law).
In electromagnetism, an eddy current (also called Foucault's current) is a loop of electric current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction or by the relative motion of a conductor in a magnetic field. Eddy currents flow in closed loops within conductors, in planes ...
An emf is induced in a coil or conductor whenever there is change in the flux linkages. Depending on the way in which the changes are brought about, there are two types: When the conductor is moved in a stationary magnetic field to procure a change in the flux linkage, the emf is statically induced.
where is back EMF, is the constant, is the flux, and is the angular velocity. By Lenz's law, a running motor generates a back-EMF proportional to the speed. Once the motor's rotational velocity is such that the back-EMF is equal to the battery voltage (also called DC line voltage), the motor reaches its limit speed.
The back EMF is strongest / most concentrated at the center of the conductor, allowing current only near the outside skin of the conductor, as shown in the diagram on the right. [ 2 ] [ 3 ] Regardless of the driving force, the current density is found to be greatest at the conductor's surface, with a reduced magnitude deeper in the conductor.