enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    The orbits are ellipses, with foci F 1 and F 2 for Planet 1, and F 1 and F 3 for Planet 2. The Sun is at F 1. The shaded areas A 1 and A 2 are equal, and are swept out in equal times by Planet 1's orbit. The ratio of Planet 1's orbit time to Planet 2's is (/) /.

  3. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    If the same sphere were made of lead the small body would need to orbit just 6.7 mm above the surface for sustaining the same orbital period. When a very small body is in a circular orbit barely above the surface of a sphere of any radius and mean density ρ (in kg/m 3), the above equation simplifies to (since M = Vρ = ⁠ 4 / 3 ⁠ π a 3 ρ)

  4. List of gravitationally rounded objects of the Solar System

    en.wikipedia.org/wiki/List_of_gravitationally...

    m 3/ s 2: 1.327×10 20: Density: g/cm 3: 1.409 Equatorial gravity: m/s 2 g: 274.0 27.94 Escape velocity: km/s: 617.7 Rotation period days: 25.38 Orbital period about Galactic Center [4] million years 225–250 Mean orbital speed [4] km/s: ≈ 220 Axial tilt to the ecliptic: deg. 7.25 Axial tilt to the galactic plane: deg. 67.23 Mean surface ...

  5. Resonant trans-Neptunian object - Wikipedia

    en.wikipedia.org/wiki/Resonant_trans-Neptunian...

    In astronomy, a resonant trans-Neptunian object is a trans-Neptunian object (TNO) in mean-motion orbital resonance with Neptune.The orbital periods of the resonant objects are in a simple integer relations with the period of Neptune, e.g. 1:2, 2:3, etc. Resonant TNOs can be either part of the main Kuiper belt population, or the more distant scattered disc population.

  6. Planet - Wikipedia

    en.wikipedia.org/wiki/Planet

    4.1.3 Rotation. 4.1.4 Orbital ... but ultra-short period planets can orbit in less than a day. ... (such as Neptune and Pluto) have orbital periods that are in ...

  7. Neptune - Wikipedia

    en.wikipedia.org/wiki/Neptune

    The average distance between Neptune and the Sun is 4.5 billion km (about 30.1 astronomical units (AU), the mean distance from the Earth to the Sun), and it completes an orbit on average every 164.79 years, subject to a variability of around ±0.1 years. The perihelion distance is 29.81 AU, and the aphelion distance is 30.33 AU.

  8. 2001 KY76 - Wikipedia

    en.wikipedia.org/wiki/2001_KY76

    It is classified as a plutino, a minor planet locked in a 2:3 mean-motion orbital resonance with the planet Neptune. [1] [3] It was discovered on May 23, 2001, by Marc W. Buie in the Cerro Tololo Observatory. The dwarf planet candidate measures approximately 285 km in diameter. [2] [4]

  9. Dermott's law - Wikipedia

    en.wikipedia.org/wiki/Dermott's_law

    Dermott's law is an empirical formula for the orbital period of major satellites orbiting planets in the Solar System. It was identified by the celestial mechanics researcher Stanley Dermott in the 1960s and takes the form: = for =,,, …