enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radius of convergence - Wikipedia

    en.wikipedia.org/wiki/Radius_of_convergence

    Two cases arise: The first case is theoretical: when you know all the coefficients then you take certain limits and find the precise radius of convergence.; The second case is practical: when you construct a power series solution of a difficult problem you typically will only know a finite number of terms in a power series, anywhere from a couple of terms to a hundred terms.

  3. Convergent matrix - Wikipedia

    en.wikipedia.org/wiki/Convergent_matrix

    When successive powers of a matrix T become small (that is, when all of the entries of T approach zero, upon raising T to successive powers), the matrix T converges to the zero matrix. A regular splitting of a non-singular matrix A results in a convergent matrix T. A semi-convergent splitting of a matrix A results in a semi-convergent matrix T.

  4. Analytic function of a matrix - Wikipedia

    en.wikipedia.org/wiki/Analytic_function_of_a_matrix

    The convergence criteria of the power series then apply, requiring ‖ ‖ to be sufficiently small under the appropriate matrix norm. For more general problems, which cannot be rewritten in such a way that the two matrices commute, the ordering of matrix products produced by repeated application of the Leibniz rule must be tracked.

  5. Spectral radius - Wikipedia

    en.wikipedia.org/wiki/Spectral_radius

    The spectral radius is closely related to the behavior of the convergence of the power sequence of a matrix; namely as shown by the following theorem. Theorem. Let A ∈ C n×n with spectral radius ρ(A). Then ρ(A) < 1 if and only if =

  6. Cauchy–Hadamard theorem - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Hadamard_theorem

    Consider the formal power series in one complex variable z of the form = = where ,.. Then the radius of convergence of f at the point a is given by = (| | /) where lim sup denotes the limit superior, the limit as n approaches infinity of the supremum of the sequence values after the nth position.

  7. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    For instance it is not true that if two power series = and = have the same radius of convergence, then = (+) also has this radius of convergence: if = and = + (), for instance, then both series have the same radius of convergence of 1, but the series = (+) = = has a radius of convergence of 3.

  8. Power iteration - Wikipedia

    en.wikipedia.org/wiki/Power_iteration

    In mathematics, power iteration (also known as the power method) is an eigenvalue algorithm: given a diagonalizable matrix, the algorithm will produce a number , which is the greatest (in absolute value) eigenvalue of , and a nonzero vector , which is a corresponding eigenvector of , that is, =.

  9. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    The matrix exponential satisfies the following properties. [2] We begin with the properties that are immediate consequences of the definition as a power series: e 0 = I; exp(X T) = (exp X) T, where X T denotes the transpose of X. exp(X ∗) = (exp X) ∗, where X ∗ denotes the conjugate transpose of X. If Y is invertible then e YXY −1 = Ye ...