Search results
Results from the WOW.Com Content Network
A variation of DFMEA developed for functional safety applications is called Design Deviation and Mitigation Analysis (DDMA). [5] The DDMA variation adds information not normally included in a DFMEA such as the automatic diagnostic mitigations, latent fault tests, and useful life. DDMA deletes RPN numbers as they are replaced by FMEDA results.
Failure mode effects and criticality analysis (FMECA) is an extension of failure mode and effects analysis (FMEA). FMEA is a bottom-up , inductive analytical method which may be performed at either the functional or piece-part level.
The design factor is defined for an application (generally provided in advance and often set by regulatory building codes or policy) and is not an actual calculation, the safety factor is a ratio of maximum strength to intended load for the actual item that was designed.
The system performance can be hierarchically decomposed into multiple smaller models and/or analytical equations. Once the probabilistic response is quantified, the results can be used to support risk-informed decisions regarding reliability for safety critical and one-of-a-kind systems, and to maintain a level of quality while reducing ...
Layers of protection analysis (LOPA) is a technique for evaluating the hazards, risks and layers of protection associated with a system, such as a chemical process plant. In terms of complexity and rigour LOPA lies between qualitative techniques such as hazard and operability studies (HAZOP) and quantitative techniques such as fault trees and ...
Worst-case analysis is the analysis of a device (or system) that assures that the device meets its performance specifications. These are typically accounting for tolerances that are due to initial component tolerance, temperature tolerance, age tolerance and environmental exposures (such as radiation for a space device).
A fault tree diagram. Fault tree analysis (FTA) is a type of failure analysis in which an undesired state of a system is examined. This analysis method is mainly used in safety engineering and reliability engineering to understand how systems can fail, to identify the best ways to reduce risk and to determine (or get a feeling for) event rates of a safety accident or a particular system level ...
An engineering process called the safety life cycle is defined based on best practices in order to discover and eliminate design errors and omissions. A probabilistic failure approach to account for the safety impact of device failures. The safety life cycle has 16 phases which roughly can be divided into three groups as follows: