Search results
Results from the WOW.Com Content Network
A unit fraction is a common fraction with a numerator of 1 (e.g., 1 / 7 ). Unit fractions can also be expressed using negative exponents, as in 2 −1, which represents 1/2, and 2 −2, which represents 1/(2 2) or 1/4. A dyadic fraction is a common fraction in which the denominator is a power of two, e.g. 1 / 8 = 1 / 2 3 .
Glossary of mathematical symbols. A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various ...
Description. The lowest common denominator of a set of fractions is the lowest number that is a multiple of all the denominators: their lowest common multiple. The product of the denominators is always a common denominator, as in: but it is not always the lowest common denominator, as in: Here, 36 is the least common multiple of 12 and 18.
For example, 1 / 4 , 5 / 6 , and −101 / 100 are all irreducible fractions. On the other hand, 2 / 4 is reducible since it is equal in value to 1 / 2 , and the numerator of 1 / 2 is less than the numerator of 2 / 4 . A fraction that is reducible can be reduced by dividing both the numerator ...
Fractions such as 22 / 7 and 355 / 113 are commonly used to approximate π, but no common fraction (ratio of whole numbers) can be its exact value. [21] Because π is irrational, it has an infinite number of digits in its decimal representation , and does not settle into an infinitely repeating pattern of digits.
The fractional part or decimal part[1] of a non‐negative real number is the excess beyond that number's integer part. The latter is defined as the largest integer not greater than x, called floor of x or . Then, the fractional part can be formulated as a difference: The fractional part of logarithms, [2] specifically, is also known as the ...
Any improper rational fraction can be expressed as the sum of a polynomial (possibly constant) and a proper rational fraction. In the first example of an improper fraction one has x 3 + x 2 + 1 x 2 − 5 x + 6 = ( x + 6 ) + 24 x − 35 x 2 − 5 x + 6 , {\displaystyle {\frac {x^{3}+x^{2}+1}{x^{2}-5x+6}}=(x+6)+{\frac {24x-35}{x^{2}-5x+6}},}
If x is rational, it will have two continued fraction representations that are finite, x 1 and x 2, and similarly a rational y will have two representations, y 1 and y 2. The coefficients beyond the last in any of these representations should be interpreted as +∞; and the best rational will be one of z(x 1, y 1), z(x 1, y 2), z(x 2, y 1), or ...