Search results
Results from the WOW.Com Content Network
Number of chest X-rays resulting in same effective dose Skull radiography (X-ray) 0.015 1 Chest X-ray 0.013 1 Lumbar spine X-ray 0.44 30 Abdomen X-ray 0.46 35 Pelvis X-ray 0.48 35 Screening mammography (4 views) 0.2 15 Dental X-ray (intraoral) 0.013 1 Diagnostic fluoroscopy: barium swallow 1 70 Cardiac angiography 7 500 Head CT 2 150 Chest CT 10
The two determinants of the F-factor are the effective atomic number (Z) of the material and the type of ionizing radiation being considered. Since the effective Z of air and soft tissue is approximately the same, the F-factor is approximately 1 for many x-ray imaging applications. However, bone has an F-factor of up to 4, due to its higher ...
Elihu Thomson deliberately exposed a finger to an x-ray tube over a period of time and experienced pain, swelling, and blistering. [31] Other effects, including ultraviolet rays and ozone were sometimes blamed for the damage. [32] Many physicists claimed that there were no effects from x-ray exposure at all. [31]
The roentgen or röntgen (/ ˈ r ɛ n t ɡ ə n,-dʒ ə n, ˈ r ʌ n t-/; [2] symbol R) is a legacy unit of measurement for the exposure of X-rays and gamma rays, and is defined as the electric charge freed by such radiation in a specified volume of air divided by the mass of that air (statcoulomb per kilogram).
Recognized effects of higher acute radiation doses are described in more detail in the article on radiation poisoning.Although the International System of Units (SI) defines the sievert (Sv) as the unit of radiation dose equivalent, chronic radiation levels and standards are still often given in units of millirems (mrem), where 1 mrem equals 1/1,000 of a rem and 1 rem equals 0.01 Sv.
Dose area product (DAP) is a quantity used in assessing the radiation risk from diagnostic X-ray radiography examinations and interventional procedures, like angiography.It is defined as the absorbed dose multiplied by the area irradiated, expressed in gray-centimetres squared (Gy·cm 2 [1] – sometimes the prefixed units dGy·cm 2, mGy·cm 2 or cGy·cm 2 are also used). [2]
It is difficult to compare the stochastic risk from localised exposures of different parts of the body (e.g. a chest x-ray compared to a CT scan of the head), or to compare exposures of the same body part but with different exposure patterns (e.g. a cardiac CT scan with a cardiac nuclear medicine scan).
In the 1930s the roentgen was the most commonly used unit of radiation exposure. This unit is obsolete and no longer clearly defined. This unit is obsolete and no longer clearly defined. One roentgen deposits 0.877 rad in dry air, 0.96 rad in soft tissue, [ 9 ] or anywhere from 1 to more than 4 rad in bone depending on the beam energy. [ 10 ]