Search results
Results from the WOW.Com Content Network
A variable in an experiment which is held constant in order to assess the relationship between multiple variables [a], is a control variable. [2] [3] A control variable is an element that is not changed throughout an experiment because its unchanging state allows better understanding of the relationship between the other variables being tested.
This is typically done so that the variable can no longer act as a confounder in, for example, an observational study or experiment. When estimating the effect of explanatory variables on an outcome by regression, controlled-for variables are included as inputs in order to separate their effects from the explanatory variables. [1]
A variable may be thought to alter the dependent or independent variables, but may not actually be the focus of the experiment. So that the variable will be kept constant or monitored to try to minimize its effect on the experiment. Such variables may be designated as either a "controlled variable", "control variable", or "fixed variable".
The same is true for intervening variables (a variable in between the supposed cause (X) and the effect (Y)), and anteceding variables (a variable prior to the supposed cause (X) that is the true cause). When a third variable is involved and has not been controlled for, the relation is said to be a zero order relationship. In most practical ...
For example, if the fertilizer was spread by a tractor but no tractor was used on the unfertilized treatment, then the effect of the tractor needs to be controlled. A scientific control is an experiment or observation designed to minimize the effects of variables other than the independent variable (i.e. confounding variables). [1]
The value –1 conveys a perfect negative correlation controlling for some variables (that is, an exact linear relationship in which higher values of one variable are associated with lower values of the other); the value 1 conveys a perfect positive linear relationship, and the value 0 conveys that there is no linear relationship.
The exact definition varies slightly within the framework or the type of models applied. The following are examples of variations of controllability notions which have been introduced in the systems and control literature: State controllability; Output controllability; Controllability in the behavioural framework
An optimal control is a set of differential equations describing the paths of the control variables that minimize the cost function. The optimal control can be derived using Pontryagin's maximum principle (a necessary condition also known as Pontryagin's minimum principle or simply Pontryagin's principle), [8] or by solving the Hamilton ...