enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lagrange polynomial - Wikipedia

    en.wikipedia.org/wiki/Lagrange_polynomial

    Example of interpolation divergence for a set of Lagrange polynomials. The Lagrange form of the interpolation polynomial shows the linear character of polynomial interpolation and the uniqueness of the interpolation polynomial. Therefore, it is preferred in proofs and theoretical arguments.

  3. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    In other words, the interpolation polynomial is at most a factor (L + 1) worse than the best possible approximation. This suggests that we look for a set of interpolation nodes that makes L small. In particular, we have for Chebyshev nodes : L ≤ 2 π log ⁡ ( n + 1 ) + 1. {\displaystyle L\leq {\frac {2}{\pi }}\log(n+1)+1.}

  4. Hermite interpolation - Wikipedia

    en.wikipedia.org/wiki/Hermite_interpolation

    Lagrange interpolation allows computing a polynomial of degree less than n that takes the same value at n given points as a given function. Instead, Hermite interpolation computes a polynomial of degree less than n such that the polynomial and its first few derivatives have the same values at m (fewer than n ) given points as the given function ...

  5. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1] It is named after the mathematician Joseph-Louis ...

  6. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    In mathematics and computer science, Horner's method (or Horner's scheme) is an algorithm for polynomial evaluation.Although named after William George Horner, this method is much older, as it has been attributed to Joseph-Louis Lagrange by Horner himself, and can be traced back many hundreds of years to Chinese and Persian mathematicians. [1]

  7. Lebesgue constant - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_constant

    In other words, the interpolation polynomial is at most a factor Λ n (T ) + 1 worse than the best possible approximation. This suggests that we look for a set of interpolation nodes with a small Lebesgue constant. The Lebesgue constant can be expressed in terms of the Lagrange basis polynomials:

  8. Laguerre's method - Wikipedia

    en.wikipedia.org/wiki/Laguerre's_method

    In other words, Laguerre's method can be used to numerically solve the equation p(x) = 0 for a given polynomial p(x). One of the most useful properties of this method is that it is, from extensive empirical study, very close to being a "sure-fire" method, meaning that it is almost guaranteed to always converge to some root of the polynomial, no ...

  9. Sylvester's formula - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_formula

    In matrix theory, Sylvester's formula or Sylvester's matrix theorem (named after J. J. Sylvester) or Lagrange−Sylvester interpolation expresses an analytic function f(A) of a matrix A as a polynomial in A, in terms of the eigenvalues and eigenvectors of A. [1] [2] It states that [3]