Search results
Results from the WOW.Com Content Network
30 varnished silicon steel foils each of thickness 0.014 inches (0.356 mm): density 7.36 g cm −3; measured near a temperature of 358.2 K under pressure in the range 0 — 132 psi: 0 psi 0.512 w m −1 K −1 20 psi 0.748 40 psi 0.846 60 psi 0.906 80 psi 0.925 100 psi 0.965 120 psi 0.992 132 psi 1.02 120 psi 1.00 100 psi NA* 80 psi 0.984 60 ...
As quoted in an online version of: David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition.CRC Press. Boca Raton, Florida, 2003; Section 4, Properties of the Elements and Inorganic Compounds; Physical Properties of the Rare Earth Metals
(room temperature) (alpha, polycrystalline) calculated 562 nΩm ... 47 Ag silver; use 2.89 nΩm 14.67 nΩm 15.87 nΩm 16.17 nΩm 16.29 nΩm 28.7 nΩm
The effective temperature coefficient varies with temperature and purity level of the material. The 20 °C value is only an approximation when used at other temperatures. For example, the coefficient becomes lower at higher temperatures for copper, and the value 0.00427 is commonly specified at 0 °C. [53]
A Assuming an altitude of 194 metres above mean sea level (the worldwide median altitude of human habitation), an indoor temperature of 23 °C, a dewpoint of 9 °C (40.85% relative humidity), and 760 mmHg sea level–corrected barometric pressure (molar water vapor content = 1.16%). B Calculated values *Derived data by calculation.
Silver is a chemical element; ... Many non-stoichiometric selenides and tellurides are known; in particular, AgTe ~3 is a low-temperature superconductor. [43] Halides
All values refer to 25 °C and to the thermodynamically stable standard state at that temperature unless noted. Values from CRC refer to "100 kPa (1 bar or 0.987 standard atmospheres)". Lange indirectly defines the values to be standard atmosphere of "1 atm (101325 Pa)", although citing the same NBS and JANAF sources among others.
A temperature coefficient describes the relative change of a physical property that is associated with a given change in temperature. For a property R that changes when the temperature changes by dT , the temperature coefficient α is defined by the following equation: