enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binary number - Wikipedia

    en.wikipedia.org/wiki/Binary_number

    The final conversion is from binary to decimal fractions. The only difficulty arises with repeating fractions, but otherwise the method is to shift the fraction to an integer, convert it as above, and then divide by the appropriate power of two in the decimal base. For example:

  3. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    This decimal format can also represent any binary fraction a/2 m, such as 1/8 (0.125) or 17/32 (0.53125). More generally, a rational number a / b , with a and b relatively prime and b positive, can be exactly represented in binary fixed point only if b is a power of 2; and in decimal fixed point only if b has no prime factors other than 2 and/or 5.

  4. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    Conversion of the fractional part: Consider 0.375, the fractional part of 12.375. To convert it into a binary fraction, multiply the fraction by 2, take the integer part and repeat with the new fraction by 2 until a fraction of zero is found or until the precision limit is reached which is 23 fraction digits for IEEE 754 binary32 format.

  5. Two's complement - Wikipedia

    en.wikipedia.org/wiki/Two's_complement

    To convert a number with a fractional part, such as .0101, one must convert starting from right to left the 1s to decimal as in a normal conversion. In this example 0101 is equal to 5 in decimal. Each digit after the floating point represents a fraction where the denominator is a multiplier of 2. So, the first is 1/2, the second is 1/4 and so on.

  6. Template:Binary - Wikipedia

    en.wikipedia.org/wiki/Template:Binary

    This template is for quickly converting a decimal number to binary. Usage Use {{Binary|x|y}} where x is the decimal number and y is the decimal precision (positive numbers, defaults displays up to 10 digits following the binary point).

  7. Decimal floating point - Wikipedia

    en.wikipedia.org/wiki/Decimal_floating_point

    One with a binary integer significand field encodes the significand as a large binary integer between 0 and 10 p −1. This is expected to be more convenient for software implementations using a binary ALU. Another with a densely packed decimal significand field encodes decimal digits more directly. This makes conversion to and from binary ...

  8. Computer number format - Wikipedia

    en.wikipedia.org/wiki/Computer_number_format

    an 11-bit binary exponent, using "excess-1023" format. Excess-1023 means the exponent appears as an unsigned binary integer from 0 to 2047; subtracting 1023 gives the actual signed value; a 52-bit significand, also an unsigned binary number, defining a fractional value with a leading implied "1" a sign bit, giving the sign of the number.

  9. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    The original binary value will be preserved by converting to decimal and back again using: [58] 5 decimal digits for binary16, 9 decimal digits for binary32, 17 decimal digits for binary64, 36 decimal digits for binary128. For other binary formats, the required number of decimal digits is [h]