Search results
Results from the WOW.Com Content Network
max is the maximum value for color level in the input image within the selected kernel. min is the minimum value for color level in the input image within the selected kernel. [4] Local contrast stretching considers each range of color palate in the image (R, G, and B) separately, providing a set of minimum and maximum values for each color palate.
A channel in this context is the grayscale image of the same size as a color image, [citation needed] made of just one of these primary colors. For instance, an image from a standard digital camera will have a red, green and blue channel. A grayscale image has just one channel.
This technique is commonly used for simplifying images, reducing storage requirements, and facilitating processing operations. In grayscale quantization, an image with N intensity levels is converted into an image with a reduced number of levels, typically L levels, where L<N. The process involves mapping each pixel's original intensity value ...
One of the most common watershed algorithms was introduced by F. Meyer in the early 1990s, though a number of improvements, collectively called Priority-Flood, have since been made to this algorithm, [9] including variants suitable for datasets consisting of trillions of pixels. [10] The algorithm works on a gray scale image.
For example, if applied to 8-bit image displayed with 8-bit gray-scale palette it will further reduce color depth (number of unique shades of gray) of the image. Histogram equalization will work the best when applied to images with much higher color depth than palette size, like continuous data or 16-bit gray-scale images.
Grayscale images are distinct from one-bit bi-tonal black-and-white images, which, in the context of computer imaging, are images with only two colors: black and white (also called bilevel or binary images). Grayscale images have many shades of gray in between. Grayscale images can be the result of measuring the intensity of light at each pixel ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
where (,) is the predicted projection of point on image and (,) denotes the Euclidean distance between the image points represented by vectors and . Because the minimum is computed over many points and many images, bundle adjustment is by definition tolerant to missing image projections, and if the distance metric is chosen reasonably (e.g ...