Search results
Results from the WOW.Com Content Network
An example of a bacteriophage known to follow the lysogenic cycle and the lytic cycle is the phage lambda of E. coli. [53] Sometimes prophages may provide benefits to the host bacterium while they are dormant by adding new functions to the bacterial genome , in a phenomenon called lysogenic conversion .
The lytic cycle (/ ˈ l ɪ t ɪ k / LIT-ik) is one of the two cycles of viral reproduction (referring to bacterial viruses or bacteriophages), the other being the lysogenic cycle. The lytic cycle results in the destruction of the infected cell and its membrane.
Bacteriophage Lambda Structure at Atomic Resolution [1] Enterobacteria phage λ (lambda phage, coliphage λ, officially Escherichia virus Lambda) is a bacterial virus, or bacteriophage, that infects the bacterial species Escherichia coli (E. coli). It was discovered by Esther Lederberg in 1950. [2]
An example of a virus that uses the lysogenic cycle to its advantage is the Herpes Simplex Virus. [10] After first entering the lytic cycle and infecting a human host, it enters the lysogenic cycle. This allows it to travel to the nervous system's sensory neurons and remain undetected for long periods of time.
Transduction happens through either the lytic cycle or the lysogenic cycle. When bacteriophages (viruses that infect bacteria) that are lytic infect bacterial cells, they harness the replicational, transcriptional, and translation machinery of the host bacterial cell to make new viral particles . The new phage particles are then released by ...
Φ6 (Phi 6) is the best-studied bacteriophage of the virus family Cystoviridae. It infects Pseudomonas bacteria (typically plant-pathogenic P. syringae). It has a three-part, segmented, double-stranded RNA genome, totalling ~13.5 kb in length. Φ6 and its relatives have a lipid membrane around their nucleocapsid, a rare trait among bacteriophages.
Phage lytic enzymes produced during bacteriophage infection are responsible for the ability of these viruses to lyse bacterial cells. [2] Penicillin and related β-lactam antibiotics cause the death of bacteria through enzyme-mediated lysis that occurs after the drug causes the bacterium to form a defective cell wall. [3]
Escherichia virus T4 is a species of bacteriophages that infect Escherichia coli bacteria. It is a double-stranded DNA virus in the subfamily Tevenvirinae of the family Straboviridae. T4 is capable of undergoing only a lytic life cycle and not the lysogenic life cycle.