enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reflexive relation - Wikipedia

    en.wikipedia.org/wiki/Reflexive_relation

    An example of a reflexive relation is the relation "is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity. Along with symmetry and transitivity, reflexivity is one of three properties defining equivalence relations.

  3. Symmetric relation - Wikipedia

    en.wikipedia.org/wiki/Symmetric_relation

    A symmetric and transitive relation is always quasireflexive. [a] One way to count the symmetric relations on n elements, that in their binary matrix representation the upper right triangle determines the relation fully, and it can be arbitrary given, thus there are as many symmetric relations as n × n binary upper triangle matrices, 2 n(n+1 ...

  4. Relation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Relation_(mathematics)

    Of particular importance are relations that satisfy certain combinations of properties. A partial order is a relation that is reflexive, antisymmetric, and transitive, [3] an equivalence relation is a relation that is reflexive, symmetric, and transitive, [4] a function is a relation that is right-unique and left-total (see below). [5] [6]

  5. Equivalence relation - Wikipedia

    en.wikipedia.org/wiki/Equivalence_relation

    A reflexive and symmetric relation is a dependency relation (if finite), and a tolerance relation if infinite. A preorder is reflexive and transitive. A congruence relation is an equivalence relation whose domain X {\displaystyle X} is also the underlying set for an algebraic structure , and which respects the additional structure.

  6. Antisymmetric relation - Wikipedia

    en.wikipedia.org/wiki/Antisymmetric_relation

    A relation can be both symmetric and antisymmetric (in this case, it must be coreflexive), and there are relations which are neither symmetric nor antisymmetric (for example, the "preys on" relation on biological species). Antisymmetry is different from asymmetry: a relation is asymmetric if and only if it is antisymmetric and irreflexive.

  7. Reflexive closure - Wikipedia

    en.wikipedia.org/wiki/Reflexive_closure

    A relation is called reflexive if it relates every element of to itself. For example, if X {\displaystyle X} is a set of distinct numbers and x R y {\displaystyle xRy} means " x {\displaystyle x} is less than y {\displaystyle y} ", then the reflexive closure of R {\displaystyle R} is the relation " x {\displaystyle x} is less than or equal to y ...

  8. Relation (philosophy) - Wikipedia

    en.wikipedia.org/wiki/Relation_(philosophy)

    An equivalence relation is a relation that is reflexive, symmetric, and transitive, like equality expressed through the symbol "=". [74] A strict partial order is a relation that is irreflexive, anti-symmetric, and transitive, like the relation being less than expressed through the symbol "<". [75]

  9. Euclidean relation - Wikipedia

    en.wikipedia.org/wiki/Euclidean_relation

    However, a non-symmetric relation can also be both transitive and right Euclidean, for example, xRy defined by y=0. A relation that is both right Euclidean and reflexive is also symmetric and therefore an equivalence relation. [1] [4] Similarly, each left Euclidean and reflexive relation is an equivalence.