enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transitive relation - Wikipedia

    en.wikipedia.org/wiki/Transitive_relation

    The transitive extension of R 1 would be denoted by R 2, and continuing in this way, in general, the transitive extension of R i would be R i + 1. The transitive closure of R, denoted by R* or R ∞ is the set union of R, R 1, R 2, ... . [8] The transitive closure of a relation is a transitive relation. [8]

  3. Equivalence relation - Wikipedia

    en.wikipedia.org/wiki/Equivalence_relation

    A partial equivalence relation is transitive and symmetric. Such a relation is reflexive if and only if it is total , that is, if for all a , {\displaystyle a,} there exists some b such that a ∼ b . {\displaystyle b{\text{ such that }}a\sim b.} [ proof 1 ] Therefore, an equivalence relation may be alternatively defined as a symmetric ...

  4. Symmetric relation - Wikipedia

    en.wikipedia.org/wiki/Symmetric_relation

    A symmetric and transitive relation is always quasireflexive. [a] One way to count the symmetric relations on n elements, that in their binary matrix representation the upper right triangle determines the relation fully, and it can be arbitrary given, thus there are as many symmetric relations as n × n binary upper triangle matrices, 2 n(n+1 ...

  5. Relation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Relation_(mathematics)

    A relation that is reflexive, symmetric, and transitive. It is also a relation that is symmetric, transitive, and serial, since these properties imply reflexivity. Orderings: Partial order A relation that is reflexive, antisymmetric, and transitive. Strict partial order A relation that is irreflexive, asymmetric, and transitive. Total order

  6. Relation (philosophy) - Wikipedia

    en.wikipedia.org/wiki/Relation_(philosophy)

    An equivalence relation is a relation that is reflexive, symmetric, and transitive, like equality expressed through the symbol "=". [74] A strict partial order is a relation that is irreflexive, anti-symmetric, and transitive, like the relation being less than expressed through the symbol "<". [75]

  7. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...

  8. Transitive closure - Wikipedia

    en.wikipedia.org/wiki/Transitive_closure

    The transitive closure of this relation is a different relation, namely "there is a sequence of direct flights that begins at city x and ends at city y". Every relation can be extended in a similar way to a transitive relation. An example of a non-transitive relation with a less meaningful transitive closure is "x is the day of the week after y".

  9. Reflexive relation - Wikipedia

    en.wikipedia.org/wiki/Reflexive_relation

    For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...