Search results
Results from the WOW.Com Content Network
Symmetric and antisymmetric relations. By definition, a nonempty relation cannot be both symmetric and asymmetric (where if a is related to b, then b cannot be related to a (in the same way)). However, a relation can be neither symmetric nor asymmetric, which is the case for "is less than or equal to" and "preys on").
A reflexive and symmetric relation is a dependency relation (if finite), and a tolerance relation if infinite. A preorder is reflexive and transitive. A congruence relation is an equivalence relation whose domain X {\displaystyle X} is also the underlying set for an algebraic structure , and which respects the additional structure.
For example, "1 < 3", "1 is less than 3", and "(1,3) ∈ R less" mean all the same; some authors also write "(1,3) ∈ (<)". Various properties of relations are investigated. A relation R is reflexive if xRx holds for all x, and irreflexive if xRx holds for no x. It is symmetric if xRy always implies yRx, and asymmetric if xRy implies that yRx ...
For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...
The edges of a graph define a symmetric relation on the vertices, called the adjacency relation. Specifically, two vertices x and y are adjacent if {x, y} is an edge. A graph is fully determined by its adjacency matrix A, which is an n × n square matrix, with A ij specifying the number of connections from vertex i to vertex j.
A relation can be both symmetric and antisymmetric (in this case, it must be coreflexive), and there are relations which are neither symmetric nor antisymmetric (for example, the "preys on" relation on biological species). Antisymmetry is different from asymmetry: a relation is asymmetric if and only if it is antisymmetric and irreflexive.
Consequently, the group induced by the symmetric difference is in fact a vector space over the field with 2 elements Z 2. If X is finite, then the singletons form a basis of this vector space, and its dimension is therefore equal to the number of elements of X. This construction is used in graph theory, to define the cycle space of a graph.
A relation is connex if and only if its complement is asymmetric. A non-example is the "less than or equal" relation ≤ {\displaystyle \leq } . This is not asymmetric, because reversing for example, x ≤ x {\displaystyle x\leq x} produces x ≤ x {\displaystyle x\leq x} and both are true.