enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Symmetric relation - Wikipedia

    en.wikipedia.org/wiki/Symmetric_relation

    Symmetric and antisymmetric relations. By definition, a nonempty relation cannot be both symmetric and asymmetric (where if a is related to b, then b cannot be related to a (in the same way)). However, a relation can be neither symmetric nor asymmetric, which is the case for "is less than or equal to" and "preys on").

  3. Equivalence relation - Wikipedia

    en.wikipedia.org/wiki/Equivalence_relation

    A reflexive and symmetric relation is a dependency relation (if finite), and a tolerance relation if infinite. A preorder is reflexive and transitive. A congruence relation is an equivalence relation whose domain X {\displaystyle X} is also the underlying set for an algebraic structure , and which respects the additional structure.

  4. Relation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Relation_(mathematics)

    For example, "1 < 3", "1 is less than 3", and "(1,3) ∈ R less" mean all the same; some authors also write "(1,3) ∈ (<)". Various properties of relations are investigated. A relation R is reflexive if xRx holds for all x, and irreflexive if xRx holds for no x. It is symmetric if xRy always implies yRx, and asymmetric if xRy implies that yRx ...

  5. Total order - Wikipedia

    en.wikipedia.org/wiki/Total_order

    For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...

  6. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    The edges of a graph define a symmetric relation on the vertices, called the adjacency relation. Specifically, two vertices x and y are adjacent if {x, y} is an edge. A graph is fully determined by its adjacency matrix A, which is an n × n square matrix, with A ij specifying the number of connections from vertex i to vertex j.

  7. Antisymmetric relation - Wikipedia

    en.wikipedia.org/wiki/Antisymmetric_relation

    A relation can be both symmetric and antisymmetric (in this case, it must be coreflexive), and there are relations which are neither symmetric nor antisymmetric (for example, the "preys on" relation on biological species). Antisymmetry is different from asymmetry: a relation is asymmetric if and only if it is antisymmetric and irreflexive.

  8. Symmetric difference - Wikipedia

    en.wikipedia.org/wiki/Symmetric_difference

    Consequently, the group induced by the symmetric difference is in fact a vector space over the field with 2 elements Z 2. If X is finite, then the singletons form a basis of this vector space, and its dimension is therefore equal to the number of elements of X. This construction is used in graph theory, to define the cycle space of a graph.

  9. Asymmetric relation - Wikipedia

    en.wikipedia.org/wiki/Asymmetric_relation

    A relation is connex if and only if its complement is asymmetric. A non-example is the "less than or equal" relation ≤ {\displaystyle \leq } . This is not asymmetric, because reversing for example, x ≤ x {\displaystyle x\leq x} produces x ≤ x {\displaystyle x\leq x} and both are true.