Search results
Results from the WOW.Com Content Network
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
The notation | x |, with a vertical bar on each side, was introduced by Karl Weierstrass in 1841. [5] Other names for absolute value include numerical value [1] and magnitude. [1] In programming languages and computational software packages, the absolute value of is generally represented by abs(x), or a similar expression.
Graphs of y = b x for various bases b: base 10, base e, base 2, base 1 / 2 . Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself.
A specific element x of X is a value of the variable, and the corresponding element of Y is the value of the function at x, or the image of x under the function. A function f, its domain X, and its codomain Y are often specified by the notation :.
Law of total expectation – the expected value of the conditional expected value of X given Y is the same as the expected value of X; Median – indicated by in a drawing above; Nonlinear expectation – a generalization of the expected value; Population mean; Predicted value
Almost a century later, Leonhard Euler fixed the terminology of infinitesimal calculus, and introduced the notation y = f(x) for a function f, its variable x and its value y. Until the end of the 19th century, the word variable referred almost exclusively to the arguments and the values of functions.
The value of a function, given the value(s) assigned to its argument(s), is the quantity assumed by the function for these argument values. [1] [2] For example, if the function f is defined by f (x) = 2 x 2 – 3 x + 1, then assigning the value 3 to its argument x yields the function value 10, since f (3) = 2·3 2 – 3·3 + 1 = 10.
The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .