Search results
Results from the WOW.Com Content Network
α-Methyl-p-tyrosine (AMPT), or simply α-methyltyrosine, also known in its chiral 2-(S) form as metirosine, is a tyrosine hydroxylase enzyme inhibitor and is therefore a drug involved in inhibiting the catecholamine biosynthetic pathway. [1]
The naturally occurring plant form of alpha-tocopherol is RRR-α-tocopherol whereas the synthetic form (all-racemic vitamin E, or dl-tocopherol) is equal parts of the stereoisomers RRR, RRS, RSS, SSS, RSR, SRS, SRR, and SSR with progressively decreasing biological equivalency, so that 1.36 mg of dl-tocopherol is considered equivalent to 1.0 mg ...
The origin of this homochirality in biology is the subject of much debate. [13] Most scientists believe that Earth life's "choice" of chirality was purely random, and that if carbon-based life forms exist elsewhere in the universe, their chemistry could theoretically have opposite chirality.
One of the first such racemates studied, by Pasteur in 1853, forms from a 1:2 mixture of the bis ammonium salt of (+)-tartaric acid and the bis ammonium salt of (−)-malic acid in water. Re-investigated in 2008, [ 9 ] the crystals formed are dumbbell -shape with the central part consisting of ammonium (+)-bitartrate, whereas the outer parts ...
Louis Pasteur - pioneering stereochemist. Chirality can be traced back to 1812, when physicist Jean-Baptiste Biot found out about a phenomenon called "optical activity." [10] Louis Pasteur, a famous student of Biot's, made a series of observations that led him to suggest that the optical activity of some substances is caused by their molecular asymmetry, which makes nonsuperimposable mirror ...
[4] [5] The configuration of other chiral compounds was then related to that of (+)-glyceraldehyde by sequences of chemical reactions. For example, oxidation of (+)-glyceraldehyde (1) with mercury oxide gives (−)-glyceric acid (2), a reaction that does not alter the stereocenter. Thus the absolute configuration of (−)-glyceric acid must be ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Traditionally, double bond stereochemistry was described as either cis (Latin, on this side) or trans (Latin, across), in reference to the relative position of substituents on either side of a double bond. A simple example of cis–trans isomerism is the 1,2-disubstituted ethenes, like the dichloroethene (C 2 H 2 Cl 2) isomers shown below. [7]