Search results
Results from the WOW.Com Content Network
Some authors prefer the terms sticky right-shift and zero-fill right-shift for arithmetic and logical shifts respectively. [7] Arithmetic shifts can be useful as efficient ways to perform multiplication or division of signed integers by powers of two. Shifting left by n bits on a signed or unsigned binary number has the effect of multiplying it ...
Logical right shift differs from arithmetic right shift. Thus, many languages have different operators for them. For example, in Java and JavaScript, the logical right shift operator is >>>, but the arithmetic right shift operator is >>. (Java has only one left shift operator (<<), because left shift via logic and arithmetic have the same effect.)
Java adds the operator ">>>" to perform logical right shifts, but since the logical and arithmetic left-shift operations are identical for signed integer, there is no "<<<" operator in Java. More details of Java shift operators: [10] The operators << (left shift), >> (signed right shift), and >>> (unsigned right shift) are called the shift ...
When performed on a negative value in a signed type, the result is technically implementation-defined (compiler dependent), [5] however most compilers will perform an arithmetic shift, causing the blank to be filled with the set sign bit of the left operand. Right shift can be used to divide a bit pattern by 2 as shown:
In all single-bit shift operations, the bit shifted out of the operand appears on carry-out; the value of the bit shifted into the operand depends on the type of shift. Arithmetic shift: the operand is treated as a two's complement integer, meaning that the most significant bit is a "sign" bit and is preserved.
The logical NOT operation may be performed on individual bits in a single binary numeral provided as input. Sometimes, such operations may be used as arithmetic short-cuts, and may have other computational benefits as well. For example, an arithmetic shift left of a binary number is the equivalent of multiplication by a (positive, integral ...
It can however in theory also be used to implement unary operations, such as logical shift left, in cases where limited by a fixed amount (e.g. for address generation unit). One way to implement a barrel shifter is as a sequence of multiplexers where the output of one multiplexer is connected to the input of the next multiplexer in a way that ...
The arithmetic left shift diagram appears to be incorrect. It shows the second-most-significant bit being copied into the most-signficant bit. In C (C99) and C++ (11) the result of left shifting a negative signed integral type is undefined behavior. C and C++ can thus be said to have no arithmetic left shift; only logical.