enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Overfitting - Wikipedia

    en.wikipedia.org/wiki/Overfitting

    For example, a neural network may be more effective than a linear regression model for some types of data. [14] Increase the amount of training data: If the model is underfitting due to a lack of data, increasing the amount of training data may help. This will allow the model to better capture the underlying patterns in the data. [14]

  3. Decision tree pruning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_pruning

    Pruning reduces the complexity of the final classifier, and hence improves predictive accuracy by the reduction of overfitting. One of the questions that arises in a decision tree algorithm is the optimal size of the final tree. A tree that is too large risks overfitting the training data and poorly generalizing to new samples. A small tree ...

  4. Shrinkage (statistics) - Wikipedia

    en.wikipedia.org/wiki/Shrinkage_(statistics)

    This idea is complementary to overfitting and, separately, to the standard adjustment made in the coefficient of determination to compensate for the subjective effects of further sampling, like controlling for the potential of new explanatory terms improving the model by chance: that is, the adjustment formula itself provides "shrinkage." But ...

  5. Mallows's Cp - Wikipedia

    en.wikipedia.org/wiki/Mallows's_Cp

    In statistics, Mallows's, [1] [2] named for Colin Lingwood Mallows, is used to assess the fit of a regression model that has been estimated using ordinary least squares.It is applied in the context of model selection, where a number of predictor variables are available for predicting some outcome, and the goal is to find the best model involving a subset of these predictors.

  6. One in ten rule - Wikipedia

    en.wikipedia.org/wiki/One_in_ten_rule

    In statistics, the one in ten rule is a rule of thumb for how many predictor parameters can be estimated from data when doing regression analysis (in particular proportional hazards models in survival analysis and logistic regression) while keeping the risk of overfitting and finding spurious correlations low. The rule states that one ...

  7. Kitchen sink regression - Wikipedia

    en.wikipedia.org/wiki/Kitchen_sink_regression

    Pejoratively, a kitchen sink regression is a statistical regression which uses a long list of possible independent variables to attempt to explain variance in a dependent variable. In economics , psychology , and other social sciences , regression analysis is typically used deductively to test hypotheses, but a kitchen sink regression does not ...

  8. 15 holiday gifts for dementia patients and caregivers ...

    www.aol.com/15-holiday-gifts-dementia-patients...

    The Alzheimer's Association released a list of gift recommendations for individuals with the disease at every stage of dementia. Experts offer insights on how to navigate the holiday amid dementia.

  9. Cross-validation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Cross-validation_(statistics)

    [8] [9] The goal of cross-validation is to test the model's ability to predict new data that was not used in estimating it, in order to flag problems like overfitting or selection bias [10] and to give an insight on how the model will generalize to an independent dataset (i.e., an unknown dataset, for instance from a real problem).