Search results
Results from the WOW.Com Content Network
An equivalent impedance is an equivalent circuit of an electrical network of impedance elements [note 2] which presents the same impedance between all pairs of terminals [note 10] as did the given network. This article describes mathematical transformations between some passive, linear impedance networks commonly found in electronic circuits.
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]
But Miller theorem is not only an effective tool for creating equivalent circuits; it is also a powerful tool for designing and understanding circuits based on modifying impedance by additional voltage. Depending on the polarity of the output voltage versus the input voltage and the proportion between their magnitudes, there are six groups of ...
The input impedance of an infinite line is equal to the characteristic impedance since the transmitted wave is never reflected back from the end. Equivalently: The characteristic impedance of a line is that impedance which, when terminating an arbitrary length of line at its output, produces an input impedance of equal value. This is so because ...
The equivalent resistance R th is the resistance that the circuit between terminals A and B would have if all ideal voltage sources in the circuit were replaced by a short circuit and all ideal current sources were replaced by an open circuit (i.e., the sources are set to provide zero voltages and currents).
The equivalent circuit for Z-parameters of a two-port network. The equivalent circuit for Z-parameters of a reciprocal two-port network. The Z-parameter matrix for the two-port network is probably the most common. In this case the relationship between the port currents, port voltages and the Z-parameter matrix is given by:
Therefore, the input impedance of the load and the output impedance of the source determine how the source current and voltage change. The Thévenin's equivalent circuit of the electrical network uses the concept of input impedance to determine the impedance of the equivalent circuit.
Equivalent series inductance (ESL) is an effective inductance that is used to describe the inductive part of the impedance of certain electrical components. [ 1 ] Overview