Search results
Results from the WOW.Com Content Network
The simple Sethi–Ullman algorithm works as follows (for a load/store architecture): . Traverse the abstract syntax tree in pre- or postorder . For every leaf node, if it is a non-constant left-child, assign a 1 (i.e. 1 register is needed to hold the variable/field/etc.), otherwise assign a 0 (it is a non-constant right child or constant leaf node (RHS of an operation – literals, values)).
Binary coding systems of complex numbers, i.e. systems with the digits = {,}, are of practical interest. [9] Listed below are some coding systems , (all are special cases of the systems above) and resp. codes for the (decimal) numbers −1, 2, −2, i. The standard binary (which requires a sign, first line) and the "negabinary" systems (second ...
In 1999, Micali, Rabin, and Vadhan introduced the concept of a VRF and proposed the first such one. [4] The original construction was rather inefficient: it first produces a verifiable unpredictable function, then uses a hard-core bit to transform it into a VRF; moreover, the inputs have to be mapped to primes in a complicated manner: namely, by using a prime sequence generator that generates ...
JFLAP (Java Formal Languages and Automata Package) is interactive educational software written in Java for experimenting with topics in the computer science area of formal languages and automata theory, primarily intended for use at the undergraduate level or as an advanced topic for high school.
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
A randomized algorithm is an algorithm that employs a degree of randomness as part of its logic or procedure. The algorithm typically uses uniformly random bits as an auxiliary input to guide its behavior, in the hope of achieving good performance in the "average case" over all possible choices of random determined by the random bits; thus either the running time, or the output (or both) are ...
Considering the natural numbers as a subset of the real numbers, and assuming that we know already that the real numbers are complete (again, either as an axiom or a theorem about the real number system), i.e., every bounded (from below) set has an infimum, then also every set of natural numbers has an infimum, say .
The Flajolet–Martin algorithm is an algorithm for approximating the number of distinct elements in a stream with a single pass and space-consumption logarithmic in the maximal number of possible distinct elements in the stream (the count-distinct problem).